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Abstract. We consider the problem of providing trusted computing
functionality in high availability systems. We consider the case where
data is required to be encrypted with a TPM protected key. For redun-
dancy, and to facilitate high availability, the same TPM key is stored in
multiple computational units, each one ready to take over if the main
unit breaks down. This requires the TPM key to be migratable. We show
how such systems can be realized using the secure storage of the TPM.
Hundreds of millions TPM 1.2 chips have been shipped but with the re-
cent introduction of TPM 2.0, more manufacturers are expected to start
shipping this newer TPM. Thus, a migration from TPM 1.2 to TPM 2.0
will likely be seen in the next few years. To address this issue, we also
provide an API that allows a smooth upgrade from TPM 1.2 to TPM
2.0 without having to redesign the communication protocol involving the
di↵erent entities. The API has been implemented for both TPM 1.2 and
TPM 2.0.

Keywords: Trusted Computing, TPM, Migration, Certifiable Migration Key,
Secure Storage

1 Introduction

A High Availability System, hereafter referred to as HAS, can be used for mission
critical systems like medical, trading, banking, mobile network infrastructure,
and blue-light systems. Such systems often run for many years and sometimes
longer than a decade. As part of high availability requirements, often such sys-
tems need trusted platform functions that guarantee that only authentic and ap-
proved system software and applications can run on them. Also, one frequently
sees demands to safely store sensitive data and keys used by applications and
management functions. In the types of HAS that we consider there are multiple
Computational Units (CUs) that are organized so they can take over each oth-
ers’ tasks in the event a CU fails. To provide for trusted platform functions like
authenticated boot and storage of sensitive data and keys, each CU is equipped
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with a TCG Trusted Platform Module (TPM). Typically, a CU is a PCB or rack
mountable unit that can be inserted in a cabinet that hosts the HAS, and can
accommodate a multitude of CUs. The use of multiple TPMs for protection in
a HAS has many technical problems due to the migration problems that the use
of TPM introduces.

At the same time, there are di↵erent versions of the TPM, which in some
aspects are very di↵erent from each other. TPM 1.2 was introduced in 2003 and
since 2006 a TPM chip has been included in many laptops. In 2012, TPM 2.0
was introduced, adding new functionality and with no backwards compatibility
with TPM 1.2. Even though PCBs still come equipped with a TPM 1.2 chip,
within a few years TPM 2.0 is likely to be the dominant chip on newer boards.
This provides a challenge as systems utilizing trusted computing functionality
may have to undergo significant, and costly, changes.

In this paper, we focus on Trusted Computing Technology, and how a CU
manufacturer can o↵er a solution where customers have unique keys, only usable
in a specific HAS, but which still utilizes generic CUs to be used as replacement
boards. Moreover, we provide a general API that is independent of the TPM
version used. This allows for a cost-e�cient deployment of the system as it can
be easily updated when TPM 2.0 gains widespread adoption.

The paper is organized as follows. Section 2 gives a brief overview of TPMs,
describing some functionality relevant to the paper. In Section 3, we specify the
use cases together with the threat model. In Section 4 we describe the require-
ments that must be met by the proposed solution, which is then described in
Section 5. A security analysis of the proposed solution is described in Section 6.
Section 7 describes the general API. Finally we discuss some related work in
Section 8. Section 9 concludes the paper.

2 Overview of TPM 1.2 and TPM 2.0

TPMs have been around for more than a decade and most laptops ship with
a TPM. Still, we have seen very few applications taking advantage of the func-
tionality provided by TPMs. Microsoft’s Bitlocker encryption system is the most
known and widely used. A TPM enables trusted computing functionality such
as authenticated boot, remote attestation and sealed storage. This section will
give a short introduction to TPM 1.2 and 2.0, highlighting the di↵erences when
duplicating keys to new destinations. For a more detailed treatment we refer to
the specifications [16,17].

2.1 Overview of TPM 1.2 and Certifiable Migration Keys

A TPM 1.2 provides a key hierarchy of asymmetric keys, where the private
part of a child key is protected (encrypted) using the public key of the parent.
Parents are of type storage key and are used to encrypt other keys, while leafs
in the tree can be of any type, e.g., a signing key, encryption key or attestation
identity key (AIK). Asymmetric keys in TPM 1.2 consist of two parts: one public



part, and one private part. The public part contains data such as the public
key and di↵erent flags. The private part is encrypted, and contains the private
key, but also usage and migration secrets. The root of the key hierarchy is the
Storage Root Key (SRK), which is created when someone takes ownership of
the TPM. The TPM owner authenticates using an owner secret and several
commands require owner authorization, e.g., commands used in migration which
is the main topic of this paper. Commands that use the private part of a key
are authenticated using a usage secret which can be unique to each key. Such
commands are e.g., creation of new keys, data signing and data decryption.

The only way to have the same key protected by two TPMs is to use migrat-
able keys. Migratable keys were introduced in TPM 1.1, o↵ering the ability to
migrate (or actually duplicate) a TPM protected key to another TPM. There
are two variants of migration schemes specified, called rewrap and migrate. In
the rewrap case, the private part of the migratable key is simply decrypted and
re-encrypted using the destination key. In the migrate scheme, the key is instead
re-encrypted using the public key of a migration authority (MA). The MA can
then re-encrypt the private part with the destination public key. We will not
consider the scheme using a migration authority any further in this paper.

Each key also has amigration secret in addition to the usage secret. Migration
is only allowed if the migration secret is known. For non-migratable keys, the
migration secret is tpmproof, a value internal to the TPM and never exposed.
Also, the source TPM-owner must approve the destination, however, for any
migratable key, the owner can choose any destination. Thus, if the TPM owner
is not trusted, the key can end up in any TPM, or even outside a TPM if the
owner migrates the key to his own keypair generated by e.g., OpenSSL.

A Certifiable Migration Key (CMK), introduced in TPM 1.2, allows for a
trusted entity, called Migration Selection Authority (MSA), to be in control of
destinations for each individual CMK. The MSA control is tied to each CMK by
binding the CMK key to a list of MSAs at key creation time (called MSAList).
Similar to migratable keys, there are two possible migration schemes for CMKs,
restrict migrate and restrict approve. In restrict approve, tickets which include
both the CMK and the destination public key, are used to control the destination.
Tickets are signed by the MSA and only the destination in the ticket can be
used as target for migration. Then the ticket is first used to create a CMK blob
encrypted with the destination SRK. Then the ticket is used again in the target
TPM to convert the blob into a key in the key hierarchy. The tickets signed by
the MSA are called restrictTickets. From these tickets, sigTickets are produced
by letting the TPM owner approve the information in the restrictTicket. Thus,
both the MSA and the TPM owner control the migration of a CMK. In the
following, restrictTickets will sometimes simply be denoted “ticket” since this is
the ticket that will be communicated between entities.

In the restrict migrate scheme, the CMK is migrated directly to an MSA.
No ticket is needed in this case since the key already is bound to the MSA at
creation time so the MSA is trusted as destination.



Di↵erent from a migratable key, a CMK can be certified by an AIK. The
certification states that the CMK key belongs to a TPM and that the private
part of the key will never leave the TPM in unencrypted form (assuming the
MSA enforces this). Certification of CMKs is not used in this paper and will not
be considered further.

2.2 Limitations of CMKs

The TPM owner controls migratable keys in the sense that he/she can create
them outside of the TPM or migrate them out from the TPM. Thus, there
is no guarantee that the private key is TPM protected. While this problem is
addressed by CMKs, putting an MSA in control, the CMKs have some important
limitations.

– A software MSA can create CMK keys outside the TPM and migrate them
into a TPM.

– When the restrict migrate scheme is used, a software MSA can read the
private CMK key.

– Each time a CMK is migrated, both out of a TPM and into a new TPM,
a signed ticket from an MSA is required. Thus, from the perspective of the
two TPMs, there must be communication with a third party. If tickets are
created in advance this is not required, but then the destinations must be
known in advance.

The last limitation above significantly restricts the use of CMKs in HAS’s,
because the destination CU (e.g. a replacement unit) is not known in advance.
It is therefore important to find secure ways to combat this problem. This is one
of the main goals in our proposed design.

2.3 Overview of TPM 2.0 and Duplication

The key hierarchy in TPM 1.2 has been replaced by an object hierarchy in TPM
2.0. Objects in the hierarchy can be both symmetric and asymmetric keys, but
also data blobs. The type is determined by a combination of the binary properties
sign, decrypt and restricted, where the last property means that the object (key)
can only perform actions on data prepared by the TPM itself. This is controlled
by including a specific byte sequence in these objects. Some commands can only
be performed in objects with this byte sequence. Storage keys are asymmetric
keys with the properties restricted and decrypt. Similar to TPM 1.2, these keys
protect child keys in the hierarchy. However, the protection in TPM 2.0 is by
symmetric encryption. A storage key has a unique seed in its private part, which
is used to derive a symmetric encryption/decryption key. This key is derived
from the seed each time a new object is created or loaded into the TPM.

In TPM 2.0 the term migration has been replaced by duplication, as it more
accurately reflects the reality. Two important object attributes are used to con-
trol duplication of a key. The first, fixedTPM, controls if an object can be du-
plicated at all. If an object has this attribute set, the object can not be dupli-
cated. Naturally, an object with fixedTPM set can not be below an object with



fixedTPM clear in the hierarchy. The second, fixedParent, controls if an object
can be explicitly duplicated (when fixedParent is clear) or if it must be implic-
itly duplicated (when fixedParent is set) by duplicating a parent key, which has
fixedParent clear.

The notion of CMKs and migration schemes has been completely removed in
TPM 2.0, and has been replaced by policies. A policy is a general concept that
controls the actions that can be performed on an object in the hierarchy. Policies
are set upon object creation time by storing a value, called authPolicy, in the
public part of an object. The authPolicy is a hash value created by running sev-
eral policy commands, where each command extends the authPolicy digest. This
is similar to how PCR values are built by using TPM Extend. The authPolicy
can be based on e.g., time limitations on usage of the object, specific commands
that are possible to execute with an object and specific parameters that can
be used in a command. Before executing a command a policyDigest must be
built in a policy session. This session also stores specific context values that are
checked upon execution, e.g., the command code if a certain command must be
executed or the fact that a certain authorization method should be used. The
final policyDigest is compared to the object’s authPolicy and if they match, the
command is executed using the information in the context values. Policies can
be combined using logical AND and OR.

The use of policies is in general optional as it is possible to authorize using
HMAC, similar to authorization in TPM 1.2, or by directly providing a password.
However, for duplication the use of policies is mandatory. Policy commands that
are particularly interesting for key duplication are TPM2 PolicyAuthorize and
TPM2 PolicyDuplicationSelect.

The TPM2 PolicyAuthorize command allows a policy to change by letting an
authority sign the new policy. This is done as follows. The TPM user generates a
new policy to use for an object. This policy, and the properties it represents, are
evaluated by an authority. If they are acceptable, the authority signs this policy
and returns the signature. The signature is verified using TPM2 VerifySignature
which returns a ticket showing that the signature is valid. This ticket, together
with the approved policy, is then used in the TPM2 PolicyAuthorize command.
Upon executing this command with a valid ticket, the policyDigest is updated by
replacing it by the hash of the name of the signature key. This hash is then the
new PolicyDigest. Thus, any policy that needs to change during the lifetime of
an object needs to include the TPM2 PolicyAuthorize command after all policies
that are subject to change. Policies added after this command has been executed
can not be changed.

The TPM2 PolicyDuplicationSelect command is used to control the destina-
tion for a duplication. The command includes both the name of the object to be
duplicated and the name of the destination. The policyDigest is updated using
both these names. Thus, the policy ties the object to a specific destination (or
several if logic OR is used). Since the destination is typically not known when
an object is created, this is typically used together with TPM2 PolicyAuthorize.



This will allow an authority to verify that the destination is valid and then sign
the resulting policyDigest.

2.4 Platform Configuration Registers

All TPMs, both of version 1.2 and 2.0, have a number of Platform Configuration
Registers (PCRs). These registers store a hash value, which is built-up by re-
peatedly calling TPM Extend or TPM2 Extend. This creates a cumulative hash,
since an extend operation depends on both a new value and the previous PCR
value. The PCRs are used to store measurements of the hardware configuration
and software. The measured values are stored in the Stored Measurement Log
(SML), outside the TPM, while the digest are secured by the TPM.

The SML can be read to ensure that the measurement values of the system
are as expected, and the integrity of the SML can be verified by comparing them
to the PCRs. In addition, keys in the TPM can be bound to certain PCR values,
such that keys can only be used when the PCRs have the correct value, thus
ensuring that keys are only used in a trusted hardware and software setting.

3 Scenario and Threat Model

The considered use case aims at building a robust infrastructure, taking the HAS
life cycle into consideration. The scenarios includes four entities.

The hardware, i.e., the computational units (CUs), are produced by a CU
manufacturer. The CU boards will include a TPM but it will not be associated
with any particular, or identified, customer or end user.

A HAS is assembled by a HAS manufacturer. The HAS manufacturer
takes two or more CUs, due to the redundancy requirements, from the CU man-
ufacturer and assembles the HAS, also using equipment from other sources. This
additional equipment is outside the scope of this work.

Customers are purchasing a HAS on which they want to store sensitive
data. This data can e.g., be keys or sensitive application data of applications
running on the HAS. The sensitive data is stored in secure storage, meaning
that it resides on a hard disk in encrypted form, protected by a TPM.

A Trusted Third Party (TTP) is used to enable the secure migration of
keys between TPMs. This is the MSA in TPM 1.2 and authority in TPM 2.0.
We assume that this party keeps all keys secure, possibly, but not necessarily,
with a TPM.

3.1 Threat Model

Any attacker that controls the hardware, will also be able to circumvent the
protection o↵ered by trusted computing, as the root of trust is potentially com-
promised. Thus, to this end it is natural to consider the CU manufacturer trusted
and it can theoretically be merged with the TTP. It is also from the CU man-
ufacturer’s perspective we mainly treat the problem. Still, mounting an attack



against the hardware is di↵erent from attacking the software controlling the
migration on the TTP. We will therefore consider them as separate entities.

In practice, many service and operating personnel, hereafter collectively named
company employees, will have access to the HAS during its lifetime. Not all com-
pany employees can be considered trusted, and this is the main reason to protect
data using a TPM, as the decryption key will never leave the TPM unencrypted.
Not trusting company employees will also help the customer to protect against
other, potentially malicious, customers’ personnel.

T1. Anyone, including customer employees, can copy data and software from
drives in the HAS cabinet. They may also interact with the TPM.

T2. CU boards can be stolen, both spare boards and those already mounted in
a cabinet. Boards from customer A can be used in the HAS of customer B.

T3. HAS manufacturer employees can access data in the HAS when it is being
assembled, in particular data that is associated with the TPM.

The main goal is to protect stolen (encrypted) HAS data from being accessed
in cleartext, while at the same time provide a system with very low downtime.

4 Requirements

Based on the scenario and threat model, we define the following requirements.

R1. Data confidentiality. Data stored on secondary memory, e.g., hard drives
or memory cards, must always be encrypted. The key may never be stored
(unencrypted) on secondary memory.

R2. Redundancy. The data on a HAS must at all times be accessible, even in
the case of hardware failure.

R3. Scalability. After completed assembly by the HAS manufacturer, spare CUs
can be ordered by the customer directly from the CU manufacturer. These
are generic and not personalised for the specific customer. Thus, we assume
that anyone will be able to buy a generic CU.

R4. Customer lockdown. Only TPMs initiated by the CU factory can be used
as replacement boards. This will allow the CU factory to create boards that
are specific for a group of customers, still allowing customers to have unique
keys.

R5. TPM Compatibility. The API used by the di↵erent entities must be com-
patible with both TPM 1.2 and TPM 2.0.

R6. Customer control. The customer should be the owner of the TPM, al-
lowing him to use it for other purposes such as remote attestation and key
certification. This also allows the customer to reuse the hardware and TPMs
in the event of a CU manufacturer going out of business.

R7. User friendliness. Replacing CUs in the HAS should be as easy as possible
for the customer. This includes minimizing the online communication with
other entities, possibly providing a completely o✏ine solution. It also includes
minimizing the HAS interaction needed by customer employees.



We return to these requirements in Section 6 when evaluating the security
of the proposed solution.

For the sake of simplifying our expositions we assume further that the HAS
uses only two CUs. Thus, the key protecting the sensitive data must be identical
in both TPMs so that the backup CU can immediately become active in case
the first CU fails. Further, when a CU breaks it should be replaced by a spare
CU from the CU manufacturer.

5 Proposed System Design

Due to the redundancy requirement (R2), one key must be associated with sev-
eral TPMs. This can only be done using duplicable (migratable in TPM 1.2)
keys. We first analyze how this can be achieved in TPM 1.2. Consider the most
straightforward solution of having a plain migratable key immediately below the
SRK in the hierarchy. To migrate this key to a new SRK, the TPM owner can
simply rewrap this key with the new SRK and import it to the new TPM.

TPM_AuthorizeMigrationKey //Owner authorized
TPM_CreateMigrationBlob //On source TPM
TPM_ConvertMigrationBlob //On destination TPM

The main problem with this is that the owner can rewrap the key with any key,
even one created outside the TPM. Thus, if the customer is the owner (R6) the
private part of the key is not guaranteed to be protected by the TPM at all
times (T1).

With CMK keys in TPM 1.2 and policies in TPM 2.0, the migration/dupli-
cation can be controlled by a trusted authority, even when the customer is the
TPM owner. The migration of a key then proceeds as follows.

TPM_CMK_ApproveMA //On source TPM, owner authorized
TPM_CMK_CreateKey //On source TPM
TPM_AuthorizeMigrationKey //On source TPM, owner authorized
TPM_CMK_CreateTicket //On source TPM, owner authorized
TPM_CMK_CreateBlob //On source TPM
TPM_CMK_CreateTicket //On destination TPM, owner authorized
TPM_CMK_ConvertMigration //On destination TPM

The TPM_CMK_ApproveMA command lets the owner bind an MSA to the CMK.
The ticket is signed by the MSA and the key can only be migrated to a destina-
tion given in the ticket. From this it is clear that the customer can not be owner
at the time the key is first created since he could assign any key to be an MSA
public key.

An important observation is that a TPM key, we call it Ke (e for encryption),
can be used on several TPMs provided that the parent key Kp is the same on
all TPMs. The key blob is stored on (secondary) memory and loaded into the
TPM when needed. Upon loading a key, it is decrypted by the parent key. Thus,
if the parent key is Kp it can be loaded into any TPM that has Kp in the
key hierarchy. In order to have Kp in several TPM key hierarchies, it must be
migratable and any key having a migratable key as parent key must also be



SRK

Mig

Mig

Allowed

SRK

Mig

CMK

Not allowed

SRK

CMK

Mig

Allowed

SRK

CMK

CMK

Not allowed

Fig. 1.Key hierarchy restrictions for migratable keys. Both the TPM CMK CreateKey and
the TPM CMK ConvertMigration commands verify that the parent key is not migratable.

migratable. Moreover, a CMK (which is migratable) may not have a migratable
key as parent. Figure 1 summarizes these restrictions.

Thus, if we wish to be able to use Ke in several TPMs without having to
migrate it, this key must be migratable, but not a CMK. The parent key Kp

can be either a plain migratable key or a CMK. Since Kp must be explicitly
migrated between TPM to facilitate the use of Ke, we make use of a trusted
third party that can control this migration. On a very high level, the proposed
solution is given in Fig. 2 and can be summarized as follows.

CU factory TTP HAS factory Customer

1: generate Kp

2: SRK, cert(SRK)

3: place Kp under SRK

4: Kp

5: load Kp

CU

generate Ke

Send replacement CU

Fig. 2. Overview of the proposed system.

1. The TTP generates the CMK key Kp to be included in all new TPMs.
2. The CU manufacturer takes ownership of a new TPM and asks the TTP for

Kp to be migrated under the new SRK.
3. The TTP migrates the key to the given SRK.
4. The TTP sends migrated key, encrypted with the SRK public key, to the

CU factory.



5. The CU factory loads the key into the CU.

At this point, a generic board has been prepared with a unique SRK, and
the Kp which is common for all boards created by the same CU. The boards
are now prepared to be shipped either to a HAS factory for HAS assembly, or
to a customer as replacement for a broken board. Assume it has been sent to a
HAS factory. The next step is then to generate the customer specific key Ke. We
consider three di↵erent alternatives for generating Ke, namely a TTP generated
Ke, a HAS generated Ke, and a customer generated Ke.

Since the boards are generic, we must take two important aspects into ac-
count. First, since Ke is a migratable key in TPM 1.2, we must ensure that it
can not be migrated further by a malicious customer employee (knowing the
owner secret). This can be controlled by not disclosing the migration secret to
untrusted users, i.e., simply to destroy it after key generation. In TPM 2.0 this
can be controlled more easily by using the fixedParent attribute. Second, we
must also ensure that Ke is bound to the HAS, so it can not be used by other
customers. This can be done by restricting the use of the key to a given PCR set-
ting. In TPM 1.2, the PCR settings can be directly specified in the key structure,
while in TPM 2.0 this is achieved using policies.

5.1 TTP Generated Ke

If the Ke is generated by the TTP, the customer needs to send the PCR values
which the new key should be bound to. Note that this requires online communi-
cation between the two entities. The new key will only be loadable underKp, and
only usable on a HAS with the correct PCR values. The steps can be described
as in Figure 3.

TTP HAS factory Customer

read PCRs
PCRs

create key Ke

load Ke

Fig. 3. TTP generated Ke.

5.2 HAS Manufacturer Generated Ke

If the HAS manufacturer generates Ke, it can be generated upon HAS assembly.
The customer specific key is created on one CU, and then the blob is copied and
loaded on the other CU as well. See Figure 4 for the executed steps.



TTP HAS factory Customer

read PCRs
create key
load key

Fig. 4. HAS factory generated Ke.

5.3 Customer Generated Ke

The customer can execute the same steps as the HAS manufacturer in the section
above to generate Ke. There is no di↵erence in commands as the hardware is
assembled in the same way as when it left the HAS manufacturer. Figure 5
describes the commands.

TTP HAS factory Customer

read PCRs
create key
load key

Fig. 5. Customer generated Ke.

5.4 HAS Initialization

Before leaving the HAS factory, and before creating the customer-specific keys,
the HAS must personalize the HAS in such a way that the PCR values are unique
to every customer. This ensures that customer-specific keys can be created.

When the HAS arrives to the customer, the customer must verify that the
PCR values after system startup are indeed unique to the customer. This can
be done by verifying that the Stored Measurements Log (SML) includes a hash
that is customer dependent. If the HAS passes this test, it is ready to be used,
knowing that Ke can only be decrypted by this HAS.

6 Security Analysis and Comparison of Properties for Ke

Generation

We assume that any data that resides on secondary storage on the HAS can be
stolen by a malicious employee (T1). This includes the encrypted sensitive data,
the encrypted sensitive part of a TPM protected key, and key usage secrets that
are needed to use a key. While it could be possible to restrict the usage secret
to only a small number of trusted employees, thus keeping it confidential, or to
distribute it using secret sharing, we do not make such assumptions in this work.



Since Ke can only be used on a customer specific HAS, the encrypted sensitive
part of Ke can only be decrypted on this HAS. Thus, it is not possible to steal
the encrypted data and the encrypted Ke and decrypt the data using a generic
board. The sensitive data is in clear only in primary memory, when used by the
HAS software.

Since the boards are generic, a stolen board will not give an attacker any addi-
tional information compared to using their own boards. This mitigates threat T2.

Threat T3 can be mitigated to di↵erent extent depending on which Ke gen-
eration alternative is used and which TPM version is used. When using a TTP
for Ke generation or when Ke is generated by the customer, the HAS manu-
facturer employees will have no access to Ke or any information about it. If
Ke is generated by the HAS manufacturer, for TPM 1.2, the security depends
on the migration secret being destroyed after the key is generated. Otherwise,
this key could be leaked to a malicious customer which is able to migrate Ke

outside the TPM. In TPM 2.0, Ke is created with fixedParent set, which can
be verified by the customer when the HAS is being initialized. Thus, it is only
for HAS manufacturer created keys in TPM 1.2 that we are not able to fully
mitigate T3, but it can be noted that an attack require cooperation between
HAS manufacturer and customer employees. Returning to T1, we can also note
that for customer created Ke in TPM 1.2, we must ensure that the migration
secret is destroyed. Thus, for TPM 1.2, higher security is achieved when Ke is
generated by a trusted third party. A summary of the di↵erent properties for
di↵erent cases are given in Table 1.

We note that there are three parts required to gain access to the secure
information stored in the HAS: the encrypted data, the customer-specific keyKe,
and the HAS itself. Thus, we cannot protect against cases where an attacker gets
hold of all three of these parts. This includes a potential case where a malicious
HAS employee cooperates with an malicious company employee at company A. If
they have access to both stolen encrypted data, and the stolen Ke from another
company B, the HAS manufacturer and employee at A may cooperate to build a
HAS with the same customer-specific PCR values as customer B, thus enabling
them to decrypt the stolen data.

Finally, we also note that our analysis relies on the assumption that the TTP
is trusted and available.

Table 1. A summary of the properties when di↵erent entities generate the key Ke.

TTP HAS man. Customer

1.2 2.0 1.2 2.0 1.2 2.0

No online communication
with other entity needed.

⇤ ⇤ ⇥ ⇥ ⇥ ⇥

Possible to verify that Ke is
bound to Kp.

⇥ ⇥ ⇤ ⇥ ⇤ ⇥



7 Unified API

We have developed a unified API for the proposed functionality, such that a
move from TPM 1.2 to TPM 2.0 will be as simple as possible. By looking at
the di↵erent phases of our solution, we can construct sequences of TPM com-
mands for each of the two TPM versions, such that we get the same behaviour,
abstracting away the di↵erences between the TPM versions.

The API has been implemented and tested to ensure the correctness of the
given commands, both for TPM 1.2 and TPM 2.0. To do this, two di↵erent TPM
simulators and support libraries have been used, one for each TPM version.

For TPM 1.2, IBM’s Software TPM version 4720 [7] has been used, which
also includes libtpm, which can be used to interface with the simulator. For
TPM 2.0, Microsoft’s TPM2 Simulator version 1.1 [10] has been used, together
with Microsoft’s TPM Software Stack version 1.1 [9].

7.1 Generation and Migration of Kp

The first step in Figure 2 is to generate Kp. The following steps are executed on
the TTP:

TPM 1.2

TPM_CMK_ApproveMA
TPM_CMK_CreateKey

TPM 2.0

TPM2_PolicyAuthorize
TPM2_Create

In step 2, the CU factory sends the SRK to the TTP, which then in step 3
executes the following commands to create a blob which is decryptable under
the given CU’s SRK.

TPM 1.2

TPM_AuthorizeMigrationKey
TPM_CMK_CreateTicket
TPM_CMK_CreateBlob

TPM 2.0

TPM2_LoadExternal
TPM2_PolicyDuplicationSelect
TPM2_PolicyAuthorize
TPM2_Duplicate

In step 4, the blob is sent to the CU factory, which then loads the blob into
the TPM under the SRK (step 5):

TPM 1.2

TPM_CMK_CreateTicket
TPM_CMK_ConvertMigration
TPM_LoadKey2

TPM 2.0

TPM2_Import
TPM2_Load

The CU now has Kp loaded directly beneath the SRK, and the customer-
specific key Ke can be generated.

7.2 Generation of Ke

The customer-specific key Ke can be generated using any of the alternatives
given in Section 5.1, 5.2, and 5.3. The commands for each of the three cases are
given below:



TTP Generated Ke

TPM 1.2

TPM_PcrRead // customer
// send PCRs TTP
TPM_CreateWrapKey // TTP
// send blob to customer
TPM_LoadKey2 // customer CU1
TPM_LoadKey2 // customer CU2

TPM 2.0

TPM2_PCR_Read // customer
// send PCRs to TTP
TPM2_PolicyPCR // ttp
TPM2_Create // ttp
// send blob to customer
TPM2_Load // customer CU1
TPM2_Load // customer CU2

HAS Manufacturer Generated Ke

TPM 1.2

TPM_PcrRead // CU1
TPM_CreateWrapKey // CU1
TPM_LoadKey2 // CU1
// copy blob to other CU
TPM_LoadKey2 // CU2

TPM 2.0

TPM2_PCR_Read // CU1
TPM2_PolicyPCR // CU1
TPM2_Create // CU1
TPM2_Load // CU1
// copy blob to other CU
TPM2_Load // CU2

Customer Generated Ke. These are the same commands as used when the
HAS manufacturer generates Ke, the only di↵erence is that they are now exe-
cuted by the customer.

TPM 1.2

TPM_PcrRead // CU1
TPM_CreateWrapKey // CU1
TPM_LoadKey2 // CU1
// copy blob to other CU
TPM_LoadKey2 // CU2

TPM 2.0

TPM2_PCR_Read // CU1
TPM2_PolicyPCR // CU1
TPM2_Create // CU1
TPM2_Load // CU1
// copy blob to other CU
TPM2_Load // CU2

7.3 CU Failure

In the event of a CU failure, the customer will receive a new CU directly from
the CU factory. This will have the key Kp loaded, as per the steps described
in Section 7.1. The customer will however be required to load the customer-
specific key Ke. Since the key is located beneath the common key Kp in the key
hierarchy, the same key blob that is used on the other CU can be used directly
on the new CU. Thus, the key blob of Ke is copied to the new CU, and the
following commands are executed:

TPM 1.2

TPM_LoadKey2

TPM 2.0

TPM2_Load

8 Related Work

Though there are few examples of widely adopted applications taking advantage
of TPM functionality, several use cases have been considered before. In [18,5],
the use of TPMs to secure VANETs was proposed and studied. Using TPMs



to increase the security in RFID tags and NFC communication has also been
proposed in [11] and [6] respectively.

The use of Certifiable Migration Keys in the Mobile Trusted Module (MTM)
for protecting secret data was proposed in [8].

Today, virtualization is a growing area, and there have been several di↵erent
proposals on how to use the TPM in virtual machines. In [2] a complete virtu-
alized TPM module is developed, which is then linked to the hardware TPM.
In [3] a para-virtualized solution is discussed. [13] discusses yet another design,
and also discusses migration of virtual TPMs to a large extent.

The use of TPMs in cloud computing has also been considered in recent
years. In [15] secure launch and migration of VMs in the cloud is discussed in
the context of trusted computing, and in [1] secure migration of virtual machines
through the use of the Trusted Platform Module is further discussed.

Remote attestation has been considered in many works before [2,4,12,14].
In remote attestation, the goal is to provide the contents of PCRs to a remote
party. The PCR values are signed with an AIK and the remote party can verify
through the signature that the system is in a known configuration. Using an
SML, the content of this, which is a set of run programs and their hashes, can
be compared to the signed PCR values. In our work, it is the customer that
verifies the PCRs and the SML.

9 Conclusions

We have proposed a solution for using TPMs to secure sensitive data in a high
availability system. The main challenge is to create customers specific keys which
can only be used in the customer’s own HAS, while at the same time allowing
generic computational units to be produced and shipped as replacement boards.
Since employees come and go, we also do not want to trust employees. Our
proposed solution relies on binding the customer specific key to a parent key
which is the same on all boards, and to also bind the key to PCR values that
are specific to a customer. We show that the increased functionality in TPM
2.0 allows a more secure solution in certain cases. In addition to the proposed
solution we define an API such that it is possible to upgrade from TPM 1.2 to
TPM 2.0 without changing the communication flow.
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