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Abstract—New software vulnerabilities are published daily.
Prioritizing vulnerabilities according to their relevance to the
collection of software an organization uses is a costly and slow
process. While recommender systems were earlier proposed to
address this issue, they ignore the security of the vulnerability
prioritization data. As a result, a malicious operator or a third
party adversary can collect vulnerability prioritization data to
identify the security assets in the enterprise deployments of
client organizations. To address this, we propose a solution
that leverages isolated execution to protect the privacy of
vulnerability profiles without compromising data integrity.
To validate an implementation of the proposed solution we
integrated it with an existing recommender system for software
vulnerabilities. The evaluation of our implementation shows
that the proposed solution can effectively complement existing
recommender systems for software vulnerabilities.

1. Introduction

Modern enterprise software systems are increasingly
complex. Organizations commonly use a plethora of soft-
ware systems - running either in-house or in public clouds -
running on hundreds or thousands of devices. A simple and
carefully implemented software library may run in isolation
for extended periods of time without maintenance. However,
as more and more software applications are interconnected,
they must be adapted to support new communication pro-
tocols, updated to process new types of input data, and
patched to fix vulnerabilities. Software patching is costly,
since it requires specialist human effort and must be done
shortly after vulnerabilities are discovered - often during
weekends and evenings - in order to minimize the risk of
exploits. Since software vulnerabilities can be discovered on
any layer of the software stack, the cost is compounded by
the complexity of selecting and prioritizing the patches.

Information about software vulnerabilities is collected
from several sources, such as public or private security infor-
mation providers, security researchers or software vendors.
Vulnerabilities discovered by the vendor of the respective
software are often treated as software bugs and corrected
in the regular release cycle. Other vulnerabilities, discov-
ered by software users or security researchers, are either

communicated directly to the vendors, publicly released,
or sold as zero-day exploits. Publicly known vulnerabilities
are assigned a common vulnerability and exposure (CVE)
identifier, along with high-level attributes such as: perceived
impact on confidentiality, integrity, and availability; attack
complexity; attack vector; and required privileges. With new
vulnerabilities published daily, software users must review
the relevant vulnerabilities, understand their impact and pri-
oritize them. This makes prioritizing software vulnerabilities
a stringent issue for both software vendors and software
users.

Recommender systems [1] were earlier proposed as
solutions for vulnerability prioritization [2]–[4]. However,
vulnerability profiles, i.e. the priority ranking of vulnerabil-
ity entries, reveal valuable information about the software
libraries, packages, applications and protocols that are part
of the user’s software bundle, i.e. the collection of software
applications, services and protocols an organization uses.
Access to this information allows an adversary to build
an intimate profile of an organization’s internal systems -
including specific software packages, versions and configu-
rations. This enables highly effective, targeted attacks using
zero-day exploits. While the recommender systems proposed
earlier address to some extent vulnerability prioritization,
they do not implement mechanisms to protect the vulnerabil-
ity profiles. We address this by describing the design, imple-
mentation and evaluation of a privacy-preserving mechanism
for software vulnerability recommender systems. We lever-
age commodity isolated execution environments to protect
vulnerability profiles using an approach derived from earlier
work on differential privacy [5], yet without compromising
the integrity of vulnerability data. Our contribution is as
follows:

• We describe a privacy protection mechanism to pro-
tect client vulnerability profiles; to the best of our
knowledge, this is the first work addressing the
privacy of client vulnerability profiles.

• we describe the implementation and evaluation of
a prototype solution, implemented using Intel SGX
enclaves and tested with a functioning vulnerability
recommender system.

The remainder of this paper is organized as follows. We



introduce the background, including the system model and
the threat model in section 2. We discuss the solution space
for protecting vulnerability profile privacy in Section 3,
describe the implementation in Section 4 and present the
evaluation results in Section 5. Finally, we discuss the
related work in Section 6 and conclude in Section 7.

2. Preliminaries

We follow earlier work and define software vulnerabil-
ities as exploitable software flaws in software systems that
pose security risks [2], [6]. Frei et al. describe several dis-
tinct phases of the vulnerability life-cycle: creation, discov-
ery, exploit availability, public disclosure, patch availability,
and patch installation. The life-cycle events are grouped into
three risk exposure phases: pre-disclosure, post-disclosure,
and post-patch [6]. In the pre-disclosure phase, neither ven-
dors nor users can affect the impact of an externally discov-
ered security vulnerability. Once a vulnerability is disclosed
(either by the vendor itself or externally), vendors and users
can develop patches to correct the vulnerability, or alterna-
tively mitigate it through workarounds. In the scope of this
paper, we consider software vendors as the only legitimate
source of software patches. Considering the large number of
software vulnerabilities released on a daily basis, assessing
the impact of a vulnerability on a particular software bundle
is a tedious task. While the community proposed a variety
of approaches for vulnerability risk assessment [7] they are
often ad-hoc, do not scale, and are not sufficiently robust to
reflect the complexity of enterprise environments.

Automating vulnerability prioritization can reduce the
duration and the risk exposure of the post-disclosure phase.
Rapid prioritization of software vulnerabilities can both
speed up patch development and patch installation. However,
despite increasing productivity, software vulnerability rec-
ommenders pose data privacy risks as they may leak client
vulnerability profiles, including information about software
vulnerabilities that users and vendors consider of primary
interest. We address this by proposing an approach to protect
client vulnerability profiles in software vulnerability recom-
menders. We next describe the system model of automated
vulnerability prioritization followed by the treat model we
consider in this work.

2.1. Automating vulnerability prioritization

Automatic tools to provide software vulnerability recom-
mendations have been described earlier [3], [4]. Such tools
help enterprise customers with recommendations and are
often provided in a Software-as-a-Service (SaaS) delivery
model. A key component in this scenario is that the service
provider must have knowledge both about the customers’
software bundles and of customer data such as user prefer-
ences from historic interactions with the system.

We consider the scenario described below. The service
provider offers two distinct features: vulnerability identifi-
cation, and vulnerability prioritization. The output of vul-
nerability identification is a list of vulnerabilities, encoded

as CVE identifiers. In the following step, the vulnerability
prioritization step, the list of CVE identifiers is passed to a
recommender, which then ranks the list of CVEs according
to user preferences. Output from the identification phase can
be obtained from various sources [3], [4], [8]. In this paper
we focus on the vulnerability prioritization phase.

Clients require a profile shared with a service provider
in order to enable the recommender system to provide
personalized ranking in the prioritization phase. This profile
contains the client’s individual preferences, including client
considerations while assessing the severity of a vulnerability.
We consider the scenario illustrated in Figure 1. A client
requests recommendations for a given set of CVE identifiers
from the recommender system. To get personalized recom-
mendations, the client also attaches its client profile p to the
request. The recommender returns a personalized ranking r
of the given vulnerabilities. Note that in this scenario, the
recommender can trivially map a client to its profile; there
is no data privacy.

Client Recommender

p, cves

r

Figure 1. Vulnerability prioritization: a client requests recommendations
for a set of CVEs, using client profile p

2.2. Isolated execution

In this paper we propose a mechanism to protect the pri-
vacy of client requests to the recommender. This mechanism
requires confidentiality of the data, requirements that can be
satisfied using isolated execution. We use SGX enclaves [9]–
[12] to create commodity trusted execution environments
(TEEs) during operating system run-time. We use TEEs
to protect the privacy of client vulnerability profiles. SGX
enclaves rely on a trusted computing base of code and data
loaded at enclave creation time, processor firmware, and
processor hardware. Program execution within an enclave
is opaque to the underlying operating system and other mu-
tually distrusting enclaves on the platform. Enclaves operate
in a dedicated memory area called the Enclave Page Cache,
a range of dynamic random access memory that cannot be
accessed by system software or peripherals [10]. The CPU
firmware and hardware are the root of trust of an enclave.
Isolation features implemented in firmware and hardware
prevent access to the enclave’s memory by the operating
system and other enclaves. While we use Intel SGX enclaves
in our implementation of the privacy-preserving service,
alternative commodity TEEs [13], [14] may be used.

2.3. Threat Model

To construct a correct and relevant threat model in the
scenario described above, we conducted in-depth interviews
with software vendors and users that operate enterprise
deployments. Software vendors highlight the importance of



protecting information about relevant software vulnerabil-
ities during the pre- and post-disclosure phases, i.e. while
assessing the vulnerability impact and prioritizing it, as well
as before releasing a software patch (see Figure 2). We
aim to protect the confidentiality of the vendor’s software
vulnerability priority ranking, since it reveals information
about the severity of the vulnerability (as perceived by the
vendor) and can be used to guide exploit development.
We assume clients have no information about unpublished
vulnerabilities. Hence, we must protect the confidentiality of
the relevance and priority of the released security patches
during the post-disclosure (denoted as tpd) and post-patch
(denoted as tpp) phases, i.e. up to the point when software
users patch their systems.

Creation Discovery Exploit
Availability

Public
Disclosure

Patch
Availability

Patch
Installation

Software user
Software vendor

Pre-disclosure Post-disclosure Post-patch

Figure 2. Vulnerability confidentiality window

We assume the duration of the post-disclosure and post-
patch phases is constant, equal to T :

tpd + tpp = T (1)

The proposed architecture contains three main compo-
nents - Client, Intermediary and Recommender. We describe
the security assumptions about the components of the pro-
posed architecture.

Client. The Client is potentially malicious, and may submit
queries containing requests for arbitrary CVE identifiers.
The goal of the malicious Client is to reveal the privacy-
preserving algorithm implemented in the Intermediary and
distinguish the vulnerability profiles of other Clients from
the vulnerability profiles generated by the Intermediary. A
set of Clients may collude to achieve this purpose.

Recommender. The Recommender is an honest-but-curious
entity that aims to reveal the vulnerability profile of a
specific Client. The Recommender is assumed to have access
to powerful computation capacity and is not sensitive to
changes in the computation load of the queries received
from the Client. A collusion between the Client and the
Recommender reveals the vulnerability profile of the col-
luding Client and is out of the scope of this model.

Intermediary. The Intermediary is potentially malicious
and aims to reveal the vulnerability profile of a specific
Client. A collusion between the Client and the Intermediary
reveals the vulnerability profile of the colluding Client and
is out of the scope of this model. However, we consider
that the isolated execution enclave that hosts the privacy
protection mechanism is trustworthy; its trustworthiness can
be established through remote attestation by any of the
components participating in the protocol. Isolated execution
enclaves used in the implementation of the Intermediary

are vulnerable to side-channel attacks [15]; we explicitly
exclude side-channel attacks from this threat model, since
they can be mitigated through improved software implemen-
tation.

We consider a remote adversary with attack capabilities
on the network and platform level. The adversary is capable
to observe and interact with the network communication
between Client and the Recommender, as well with the
communication among the internal services of the Recom-
mender. Furthermore, the adversary can launch arbitrary
processes and obtain root access on the hosts running the
Recommender.

3. Vulnerability Profile Privacy

As discussed in Section 2.3 above, our goal is to protect
the privacy of individual Client vulnerability profiles. To
design a solution for this task, we consider the following
defining aspects: (i) Client profile updates are sparse (e.g.
one request every period T ); (ii) vulnerability profiles evolve
after every period T ; (iii) the value of an arbitrary snapshot
of the vulnerability profile decays in time T , equal to the
length of software user’s confidentiality window. These are
aspects that are sound in the context of vulnerability prior-
itization, but may not hold for other recommender systems.

While a myriad of definitions, approaches and tech-
niques have been proposed for privacy protection, it remains
an elusive goal. One reason is the discrepancy between the
assumptions required for a solution to offer data privacy
protection in the presence of other related data sets. Another
reason is the trade-off between data privacy and data utility
present in most privacy-preserving solutions [5], [16].

To protect the privacy of Client vulnerability profiles,
we design an approach based on a combination of k-
anonymity [17], [18] and local differential privacy [19]–
[21]. A combination of the two approaches guarantees that
queries derived from Client vulnerability profiles are re-
leased only in large enough batches that contain additional
queries derived from statistically different pseudo vulner-
ability profiles. This approach prevents the direct release
of information about subgroups and provides differential
privacy guarantees by adding pseudo-random noise (in the
form of fake queries) to the genuine queries based on
individual Client vulnerability profiles.

This approach, adapted to the vulnerability recommender
system described in [4], allows us to substitute the privacy-
utility trade-off with a privacy-cost relation. Intuitively,
larger proportions of noise accompanying genuine queries
lead to stronger privacy of the respective Client vulnerability
profile. While increasing computational cost of the recom-
mender, this allows to proportionally decrease the utility of
information observed by the adversary, without utility loss
for the client.

3.1. k-anonymous vulnerability profiles

We next describe the mechanism for protecting the
anonymity of queries derived from Client vulnerability pro-



files. Our approach is based on two fundamental aspects:
(1) issuing queries in large enough batches, and (2) mixing
queries derived from genuine Client vulnerability profiles
(called genuine queries) with pseudo-random noise ex-
pressed as queries derived from statistically different pseudo
vulnerability profiles (called pseudo queries).

We next present the approach of issuing a single genuine
query per batch. Each Client vulnerability profile consists of
exactly n different properties, where each property describes
the Client’s preference for a certain aspect of a vulnerability.
Preferences are represented as a vector p describing the
Client profile, where each individual property is denoted
vi.

p = {v1, v2, . . . , vn} (2)

For example, a Client vulnerability profile may be built
by ranking three different vulnerability properties: confi-
dentiality impact, integrity impact, and availability impact.
A client preference could be that the Client considers that
vulnerabilities affecting confidentiality have higher priority,
while vulnerabilities with an impact on integrity or avail-
ability have lower priority. A profile is then represented
as: {0.9, 0.2, 0.2}, where a higher value vi implies that a
property is considered more important.

To reduce the utility of information disclosed to the
adversary through queries, the pseudo queries should fulfill
two requirements: (i) introduce sufficient noise regardless
of the cardinality of the profile |p| and of the values of the
elements vi in the profile; (ii) have the same dimensions
and be indistinguishable from the genuine query. Different
from database anonymization approaches [17], [18], [22],
low variability in the data set does not satisfy our privacy
requirements, since it leaks Client vulnerability profile data.
Therefore we add a third condition that the pseudo queries
must satisfy, along with conditions (i), (ii) above: (iii) the
query data set should display high variability (or high stan-
dard deviation in statistical terms).

Thus, on every period T , the Client submits a query Qg

to the Intermediary. The Intermediary derives k− 1 pseudo
queries Qp that along with Qg are submitted to the Recom-
mender. The Recommender processes all of the queries and
returns k different responses based on the received queries.
As a result, neither the adversary observing the network, nor
the potentially malicious Recommender are aware which of
the k (profile, response)-pairs belongs to the Client. Upon
receiving k replies the Intermediary discards all pseudo
queries Qp and returns to the Client the reply to query Qg.
The variability of the k profiles is sufficiently large to make
it unfeasible to draw any conclusions about the contents of
the genuine profile. The size k−1 is configurable, depending
on the computational cost acceptable for the Recommender
and the privacy guarantees requested by the Client.

Having described the Client vulnerability profile
anonymization principles, we next discuss the use of isolated
execution to provide platform security guarantees of the
Intermediary.

3.2. Privacy protection with isolated execution

The privacy-preserving mechanism described above can
be implemented by any component of the proposed archi-
tecture: Client, Intermediary, or Recommender (see Sec-
tion 2.3). A straightforward client implementation is pos-
sible; however, this places a large load on the client and
generate excessive network traffic. Alternatively, a client
may choose to instead send only a single request to the
intermediary. The intermediary is then responsible for send-
ing multiple requests to the Recommender. From the Client’s
point of view, a trustworthy intermediary allows to reduce
external network traffic, since the intermediary can be placed
close to the recommender system. The privacy-preserving
mechanism can also be implemented by the Recommender
provider itself, thus reducing the network latency between
the Intermediary and the Recommender to near zero. How-
ever, this is incompatible with the honest-but-curious Rec-
ommender described in Section 2.3.

Trustworthy intermediary functionality can be imple-
mented using the functionality of a TEE. The TEE should
support remote attestation, isolated execution, and sealing of
sensitive data. In the description below, a solution designed
on Intel SGX is described, but we stress that alternative
commodity TEEs may be used instead. We consider a
scenario with the following requirements:

• A malicious Intermediary or Recommender system
should not be able to know if a certain client profile
is the genuine client profile for a particular Client.

• The Client should be able to attest the integrity of
the Intermediary before sending sensitive data.

• The Recommender should be oblivious to the
privacy-preserving measures taken by the Interme-
diary: changes to the privacy preserving mechanism
in the Intermediary should not require any modifi-
cations of the Recommender.

We propose a solution as depicted in Figure 3. The
Client starts by attesting the integrity of the Intermediary
through remote attestation. During this stage, the Client
receives proof that the TEE of the Intermediary has not
been tampered with, and negotiates a shared secret S, which
can be used to send encrypted data to the TEE. The key S
is confined within the TEE and cannot be read from the
outside.

Client Intermediary Recommender

TEE

...

Figure 3. Proposed design with an Intermediary running in a TEE

Next, the Client either updates its client profile, or
requests recommendations from the Recommender. In both
cases, the Client sends a single request to the Intermedi-
ary, encrypted with the shared secret S. The TEE of the
Intermediary can then decrypt the request.



For a request to update the profile, the TEE generates k−
1 new pseudo profiles, to be used as described in Section 3.1.

For a request for recommendations, the TEE looks up k
different profiles, of which only one is the genuine profile.
These profiles are then used to generate k queries to the
Recommender. All k responses are then returned to the
Intermediary. The Intermediary next sends all results into the
TEE, which picks the result corresponding to the genuine
client profile. This result is encrypted with S and sent
back to the Client, where it can be decrypted. This design
achieves the following properties:

• The decrypted data with the genuine client profile is
never available alone to the Intermediary outside the
TEE. Only the collection of k profiles is available,
and it is not possible to distinguish the genuine
profile from pseudo profiles.

• Following the definition of a TEE, an entity on the
outside can never read data inside the TEE.

• If the adversary modifies the TEE, the attestation
phase will fail, and no sensitive data will be sent to
the TEE.

• The Recommender remains unaware of the Interme-
diary and simply receives extra requests made with
several different profiles.

Together, these properties fulfill the requirements described
earlier in this section. We will next describe implementation
details in Section 4.

4. Implementation

To evaluate our proposed design and demonstrate its
viability, we implemented a proof-of-concept prototype. The
implementation uses Intel SGX to provide the TEE of the
Intermediary, and was evaluated with hardware support for
Intel SGX.

The implementation includes three major components:
Client, Intermediary, and Recommender, (see Figure 3). In
this implementation our focus is the Client and the Interme-
diary. We assume that the Recommender is already imple-
mented, but without any privacy-enabling technologies, as
explained in Section 2.1 and [4]. The three main features
that the implementation must support are remote attestation,
profile management, and recommendation generation. We
next describe their implementation details.

4.1. Remote attestation

The first step before the Client can trust the Intermediary
is to attest the Intermediary’s TEE, in this case an SGX
enclave. The remote attestation implementation uses the
suggested design from Intel [23], using a modified Sigma
protocol to derive a shared secret in the attestation phase.

We next briefly describe the procedure (see [23] for more
details). First, the Client starts the attestation process by
contacting the Intermediary, which initiates the remote at-
testation process inside the enclave. The Client proceeds by

retrieving a signature revocation list from Intel Attestation
Services (IAS), and sends this to the enclave together with
other data. The enclave proceeds by returning a quote, which
can then be verified by the Client. This verification is done
by first contacting IAS, to verify that the quote is made by
an enclave on trusted hardware. After this, the hash value
of the enclave’s code can be read from the quote. If this
matches the expected value, the Client can be certain that
the enclave has not been tampered with.

After this point, both the enclave and the Client has a
shared secret S that can be used to secure further communi-
cations. Note that this secret is only available to the Client
and the enclave, not the Intermediary outside the enclave.

4.2. Profile management

Client

profile
storage

Intermediary

TEE

E(uidg , p∗g)

pg

p1 p2 . . . pk−1

p∗g
p∗1 p∗2 . . . p∗k−1

transform
based on
diff(pg , p∗g)

Figure 4. Enclave profile management during profile update

The profile management is located within the trusted
enclave. This ensures that its behavior can be verified by the
Client, such that it does not leak information to an attacker.

Each client profile pi, has a corresponding id uidi, used
in communication between the different entities. Further-
more, for each genuine client profile pg, there are k − 1
pseudo profiles. Using a different set of pseudo profiles for
each genuine profile ensures that colluding clients cannot
find pseudo profiles for other clients. The profile manage-
ment keeps a record over the mapping between genuine and
pseudo profiles, such that the same set of pseudo profiles
is used during profile update or recommendation generation
for a specific genuine profile.

As the user’s preferences change, the profile stored in
the enclave needs to be updated. An overview of this is
shown in Figure 4. During the profile update stage, the
Client sends an encrypted updated genuine profile p∗g to the
Intermediary. The profile is decrypted inside the enclave,
which then applies a transformation function as described
below. The transformation is applied to each one of the k−1
pseudo profiles. This ensures that an outside observer can
only see that all profiles have been updated, but still cannot
know which one that is the genuine profile.

There are two main events in the life cycle of pseudo
profiles: the initial pseudo profile generation, and updates
of the pseudo profile. First, when a new genuine profile
is created for the first time, k − 1 new pseudo profiles



must also be created. Based on requirements listed in Sec-
tion 3.1, the pseudo profiles should be indistinguishable
from a genuine profile. To achieve this during initial pseudo
profile generation, we select a profile such that its properties
are distributed according the distribution of each property’s
value over all existing profiles, inspired by the work on t-
closeness [24]. This ensures that the newly generated pseudo
profiles is non-distinguishable from genuine profiles.

Second, when a profile should be updated, following
the terminology from Figure 4, we want to implement a
diff() function that updates the pseudo profiles based on
the update of the genuine profile. This function should: (i)
hide which property of the profile that was updated, and
(ii) hide the exact value difference between the new and the
old property. Without loss of generality, we can assume that
during update of a genuine profile pg to its new value p∗g,
only a single property vi of the profile is modified1.

To hide which property vi that is updated, for every
pseudo profile, we randomly select a property vj from that
profile (1 ≤ j ≤ n), whose value is updated. The result
is that different properties are updated, and since an outside
observer does not know the genuine profile, it is not possible
to find out which actual property that was updated.

To hide the exact value difference between the old
property vi and the new property v∗i , we suggest a solution
similar to differential privacy [5]. While the genuine profile
is updated to (the exact) new property value v∗i , noise is
added to the pseudo profile. The noise is based on the
difference vi−v∗i , such that the exact value of the difference
is hidden. The distribution from which to draw the noise may
be varied, in our proof-of-concept we base it on the Laplace
distribution commonly used in ε-differential privacy.

4.3. Recommendation generation

Client

Intermediary

R
ecom

m
ender

TEE

E(uidg),cves p1, cves
r1

p2, cves
r2

pk, cves
rk

...

E(rg)

Figure 5. Recommendation generation

We illustrate the flow for recommendation generation in
Figure 5. When the Client wishes to request recommenda-
tions, it sends a request to the Intermediary. The request
contains an encrypted id (uidg), and a list of CVEs to rank.
The enclave decrypts the id, and returns k different profiles
to the Intermediary, outside of the enclave. One of these
profiles is the genuine client profile (pg), but to the outside
observer, all profiles are indistinguishable.

1. A single profile update modifying multiple properties can be converted
to several consecutive updates, each modifying a single property.

For each of the k profiles, the Intermediary sends one
request to the Recommender, which returns k different
responses. The responses are forwarded to the enclave which
selects only response rg corresponding to the genuine user
profile pg, encrypts it, and returns it to the Client.

An implementation must consider several aspects to
avoid leaking information. First, the order of profiles must
be randomized, such that the position of the genuine profile
is not known. Second, even though the id and response is
encrypted, the size of the ciphertext may still leak infor-
mation, if different user profiles and responses from the
Recommender have different sizes. It is therefore important
for the enclave to ensure that all ids have identical size,
as well as verifying that responses from the Recommender
do not differ in size. In practice, this does not limit the
functionality of the system: both the id and recommender
response can be padded inside the enclave to ensure equal
size. Note that since it is the communication between client
and enclave that is padded, the Recommender does not have
to be modified.

5. Evaluation

To evaluate the performance overhead of the proposed
privacy-enabling mechanism, we measured the response
time for recommendation generation.

Consider the setup in Figure 3, with each entity running
on a different host, connected to the same local network.
The Recommender is an actual implementation of a rec-
ommender as described in [4], and the Intermediary’s TEE
is on a CPU with hardware support for Intel SGX. We
performed the following measurements. First, three random
sets of CVEs were constructed, containing 30, 100, and 1000
different CVEs, respectively. Second, for each such set, we
perform a test without the Intermediary as a baseline; in
this test the Client connects directly to the Recommender,
without any privacy protection. This can be used as a
reference when comparing to the other measurements. Third,
again for each set of CVEs, we performed five tests with
different privacy levels, i.e. different values of k. Recall that
k determines the number of profiles that are sent to the
Recommender, so for e.g. k = 8, there is one genuine and
seven pseudo profiles being sent to the Recommender. Each
test was repeated 100 times, and the resulting mean, median,
and standard deviation are presented in Table 1. Note that the
baseline measurement, in which the Client connects directly
to the Recommender, is denoted by k set to none.

The evaluation of the prototype implementation high-
lights the relation between the privacy guarantees and the
response time of the recommender system. Requests to
recommender systems for vulnerability prioritization are ex-
pected to be sparse and potentially asynchronous. Therefore,
we consider the increase in response time detailed in Table 1
acceptable, considering the added benefit of data privacy.



TABLE 1. RESPONSE TIMES FOR RECOMMENDATION GENERATION FOR
VARIOUS NUMBER OF CVES AND VARIOUS VALUES OF k

#CVEs k Mean (ms) Median (ms) St.dev (ms)

30 none 94.2 93.8 3.2
1 106.7 106.4 7.2
8 324.0 323.0 21.1

16 589.3 583.4 21.0
32 1117.6 1114.5 31.1
64 2154.7 2159.6 32.6

100 none 122.0 121.6 2.6
1 135.2 135.0 2.5
8 378.0 371.7 33.0

16 662.5 650.5 39.9
32 1206.7 1198.0 49.9
64 2281.7 2277.3 44.0

1000 none 442.6 441.6 5.5
1 463.6 462.9 6.5
8 813.4 777.5 108.6

16 1536.7 1502.8 153.1
32 2682.3 2661.1 136.1
64 4881.5 4836.1 154.9

6. Related Work

In this paper we address the challenge of protecting the
privacy of Client profiles in a vulnerability recommender
service. While this topic was not addressed earlier, we base
our approach on a rich body of privacy and anonymity
research. We next review the related work.

6.1. Privacy for recommender systems

McSherry et al. described the design and implementa-
tion of a platform for privacy-preserving data analysis for
SQL-like queries [25]. While this approach allows to write
applications that provide privacy guarantees in an honest-
but-curious threat model, it is not backward-compatible with
existing applications and requires native implementations
in the Privacy Integrated Queries platform. Abadi et al.
described algorithmic techniques for learning and a refined
analysis of privacy costs within the framework of differential
privacy [26]. The approach is geared towards training deep
neural networks with non-convex objectives. The solution
enables this functionality under a modest privacy budget
and at a manageable cost in software complexity and model
quality. However, the approach is not suitable for the honest-
but-curious threat model, since it relies on a trustworthy
implementation of the framework on the data processing
end. Our approach introduces a privacy-protection layer that
is independent of the implementation of the data processing
(in this case a recommender system) and can therefore be
applied to a wide range of applications.

Ohrimenko et al. described an approach for oblivious
multi-party machine learning on trusted processors [27].
The approach relies of a set of custom machine learn-
ing algorithms for trusted processors that make use of
general-purpose oblivious primitives. For further security,
the multi-party machine learning mechanism is implemented

in trusted execution environments (namely Intel SGX en-
claves). The Prochlo [28] implementation likewise uses
Intel SGX enclaves to implement the the Encode, Shuffle,
Analyze architecture for privacy-preserving software mon-
itoring. The architecture is tailored for anonymizing data
streams from many heterogeneous sources and allows to
expose anonymized data to third parties. In this paper,
we similarly rely on SGX enclaves to create trusted ex-
ecution environments to run an implementation for query
anonymization. We address a different use case, where the
privacy of a single profile using the recommender system
is preserved against an adversary capable to observe the
queries and the internals of the recommender system.

6.2. Vulnerability selection

Vulnerability detection precedes and is closely related
to vulnerability selection. In [29] the authors address the
challenge of shifting vulnerability detection from a human-
centric to a computer-centric approach. In particular, the
paper presents a design and implementation for a human-
assisted automated vulnerability analysis system. VULCON
(VULnerability CONtrol) is a vulnerability management
strategy described in [3]. It is based on two metrics, namely
time-to-vulnerability remediation and total vulnerability ex-
posure. Based on inputs such as vulnerability scan reports,
metadata about the discovered vulnerabilities, asset criti-
cality, and personnel resources VULCON prioritizes vul-
nerabilities for patching. Both vulnerability detection and
vulnerability selection may require anonymity and privacy
guarantees for the Client profiles in privacy-sensitive set-
tings. Our work addresses this by describing a privacy
protection mechanism for Client vulnerability profiles.

7. Conclusion

Automated vulnerability prioritization and patch selec-
tion become increasingly necessary in order to cope with
the growing complexity of corporate software environments.
Earlier research on recommender systems for vulnerability
prioritization and patch selection did not address the privacy
of client vulnerability profiles. In this work we presented
a privacy-preserving mechanism that helps protect client
vulnerability profiles in the context of recommender systems
for vulnerability prioritization and patch selection; to the
best of our knowledge, this is the first work addressing this
aspect. We implement a prototype of the proposed solution
using Intel SGX enclaves and a functioning recommender
system for vulnerability prioritization and patch selection.
Our evaluation of the prototype implementation reveals that
the response time increases along with the proportion of
pseudo queries issues with each request, but remains accept-
able considering that requests are expected to be sparse. The
evaluation result highlights that the proposed mechanism is
practical and can complement existing recommender sys-
tems for vulnerability prioritization and patch selection.
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