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Abstract. Distinguishers and nonrandomness detectors are used to dis-
tinguish ciphertext from random data. In this paper, we focus on the con-
struction of such devices using the maximum degree monomial test. This
requires the selection of certain subsets of key and IV-bits of the cipher,
and since this selection to a great extent affects the final outcome, it is
important to make a good selection. We present a new, generic and tun-
able algorithm to find such subsets. Our algorithm works on any stream
cipher, and can easily be tuned to the desired computational complexity.
We test our algorithm with both different input parameters and differ-
ent ciphers, namely Grain-128a, Kreyvium and Grain-128. Compared to
a previous greedy approach, our algorithm consistently provides better
results.

Keywords: Maximum degree monomial, distinguisher, nonrandomness detec-
tor, Grain-128a, Grain-128, Kreyvium

1 Introduction

Stream ciphers are symmetric cryptographic primitives which generate a pseudo-
random sequence of digits, called the keystream, which is then combined with
the plaintext message to produce a ciphertext. To generate the keystream, a
public initialization vector (IV) and a secret key are used. It is important that
an attacker cannot use the public IV to deduce information about the keystream,
since this would put the encrypted message at risk.

To prevent such an attack, the key and IV are mixed during an initialization
phase, before the stream cipher produces actual keystream. This initialization
phase consist of a set of initialization rounds, during which the output of the
cipher is suppressed.

A cipher needs to have an adequate amount of initialization rounds. Too
many, and the cipher will have poor initialization performance, too few and an
attacker may be able to perform an attack, e.g., a chosen-IV attack.

In this paper we will look into the design of distinguishers and nonrandomness
detectors to perform cryptanalysis of different ciphers. The goal of such devices
is to look at data and then determine whether the data is random data, or data
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from a specific cipher. Recall that for a good cipher, the keystream should be
pseudo-random, so it should be hard to construct such a detection device, since
data from a cipher should appear random to an outside observer.

Distinguishers and nonrandomness detectors differs in what degree of control
an attacker has over the input. In a distinguisher, the key is fixed and unknown
to the attacker, only the IV can be modified. In a nonrandomness detector, an
attacker has more control, and can modify both key and IV bits.

The design of distinguishers and nonrandomness detectors has previously
been discussed in the literature. Previous work such as [8] has considered the
design of such devices by using a test called the Maximum Degree Monomial
(MDM) test. This test looks at statistical properties of a cipher to find weak-
nesses.

This test requires selection of a subset of the cipher’s key and IV bits, which
can be selected using, for example, a greedy algorithm, as described in [16].

We build upon this previous work and propose an improved, generalized,
algorithm which outperforms the greedy algorithm in finding suitable subsets.
We also implement and test our algorithm, and present new results on the stream
ciphers Grain-128, Grain-128a and Kreyvium.

This paper is an extended and revised version of [11]. The major novelties are
analysis of one more cipher (Kreyvium), a new test which investigates the effect
of optimal starting subsets, and a more detailed descriptions of our algorithm.

The paper is organized as follows. In Section 2 we present some required
background, which is then used when describing our new algorithm in Section 3.
Results are presented in Section 4, which is then followed by a discussion of
related work in Section 5. Section 6 concludes the paper.

2 Background

In this paper we will mainly focus on the analysis of the two stream ciphers
Grain-128a and Kreyvium. This selection of ciphers has been made since they
share some interesting properties. They are both based on ciphers from the final
eSTREAM portfolio (Grain v1 and Trivium, respectively), but modified to have
128-bit keys. Both ciphers also update their internal state relatively slowly—a
small fraction of the internal state is modified in each clock cycle. This requires
both ciphers to have many initializations rounds.

For completeness, we start with a brief description of these two ciphers. After
this, in the rest of this chapter, we discuss the Maximum Degree Monomial test
in more detail.

2.1 Grain-128a

The Grain-family of ciphers consist of a progression of ciphers, starting with
Grain v1 [10], which is included in the final eSTREAM portfolio of ciphers.
This was extended into a 128-bit key version as Grain-128 [9], and finally to the
current version Grain-128a [1].



Grain-128a is a stream cipher with a 128 bit key and a 96 bit IV. It support
two modes of operations, with or without authentication. For brevity, the follow-
ing description will focus on the non-authenticated mode. Refer to the original
paper for an extended description. The cipher is constructed with three major
parts: one LFSR of size 128, one NFSR of size 128, and one pre-output function
h combining values from the LFSR and the NFSR. An overview of the cipher
can be seen in Figure 1.
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Fig. 1: Overview of Grain-128a.

The functions f(x) and g(x) are the feedback functions for the LFSR and
the NFSR respectively. They are defined as follows:

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128

and

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67

+ x69x101 + x80x88 + x110x111 + x115x117 + x46x50x58

+ x103x104x106 + x33x35x36x40

The function h(x) is defined as follows, where si and bi correspond to the ith
state variable of the LFSR and the NFSR respectively:

h = b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

Finally, the output z from the cipher is constructed as:

z = h+ s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89

The initialization of the cipher is as follows. At first the NFSR is filled with
the 128 key bits, and then the LFSR is filled with the 96 IV-bits. The remaining
32 bits of the LFSR are filled with ones, except the final bit which is set to zero.
After this, the cipher is clocked 256 times, during which the output is suppressed
and instead fed back and XORed with the input to both the NFSR and LFSR.
After this, the cipher is ready and starts to produce keystream.



2.2 Kreyvium

Kreyvium [3] is based on another eSTREAM finalist, namely Trivium [5]. Triv-
ium is notable for its simplistic design. It has an 80 bit key and an 80 bit IV.
The authors of Kreyvium modifies the construction by increasing this to 128 bit
for both the key and the IV.

Kreyvium’s internal state consists of five different registers, of sizes 93, 84,
111, 128, and 128 bits. In the following brief description, we will call them a, b, c,
IV ∗, and K∗, respectively. The first three registers are the same as in Trivium,
while the latter two are added in Kreyvium. An overview of the cipher can be
found in Figure 2.
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Fig. 2: Overview of Kreyvium.

Following the notation of the original paper, the registers a, b, and c are num-
bered s1, . . . , s93, followed by s94, . . . , s177, and finally s178, . . . , s288, respectively.
Then the output z can be expressed as:

z = s66 + s93 + s162 + s177 + s243 + s288 +K∗0



For every clock, each LFSR is shifted one step, and the following values are
shifted in for each register:

s1 = s243 + s288 +K∗0 + s286s287 + s69

s94 = s66 + s93 + s91s92 + s171 + IV ∗0

s178 = s162 + s177 + s175s176 + s264

K∗127 = K∗0

IV ∗127 = IV ∗0

The initialization of the ciphers is as follows. The a register is initialized with
the first 93 key bits. The b register is intialized with the first 84 IV bits. The
c register is initialized with the remaining IV bits, followed by all ones, except
the final bit which is a zero. The K∗ register is filled with the key, and the
IV ∗ register is filled with the IV. After this the cipher is clocked 1152 times,
during which the output is suppressed. After this, the cipher starts generating
keystream.

2.3 Maximum Degree Monomial Test

The maximum degree monomial test was first presented in [8] and described a
clean way to detect nonrandomness by looking at the cipher output.

Considering an arbitrary stream cipher, we can consider it as a black box
with two inputs, and one output. The input is the key K and the initialization
vector (IV) V respectively, while the output is the generated keystream. We
consider the concatenation of the key K and the IV V as a boolean space B of
dimension b = |K|+ |V |.

Any Boolean function g over a boolean space B can be described by its
Algebraic Normal Form (ANF)

g(x1, x2, . . . , xb) = c0 + c1x1 + c2x2 + . . .+ cmx1x2 . . . xb

where the coefficients ci are either 0 or 1, thus describing if the term is included
in the ANF or not. For the function g above, the last term with coefficient cm
describes the maximum degree monomial. If cm is zero, we say that the maximum
degree monomial does not exist, while if cm is 1, we say it does exist. We note
that for a randomly chosen Boolean function g, we would expect the maximum
degree monomial to appear with a probability of 1

2 .
We are interested in finding out whether or not the maximum degree mono-

mial exists in the ANF of the Boolean function of the first keystream bit. The
rationale behind this is that intuitively, the maximum degree monomial tells us
something about the mixing of the input to the cipher. Since the maximum de-
gree monomial is the product of all inputs of the Boolean function, we expect to
see it only if all inputs have been mixed.



It is well known that according to the Reed-Muller transform, the coefficient
of the maximum degree monomial can be found simply by XORing all the entries
in the truth table of a Boolean function as⊕

x∈{0,1}b
g(x) (1)

where g(x) is a Boolean function. Thus all possible values for the input set is
generated, and for each input value the function is evaluated.

We will use this test to analyze the required amount of initialization rounds
of a stream cipher. The designers of a stream cipher need to select how many
initialization rounds to perform: too few, and it may be possible to attack the
cipher, too many, and the performance hit will be large.

If we consider the first bit of keystream from a stream cipher as a Boolean
function, we can choose to sum over this function in Equation 1 above. The
input x would then correspond to the input set of key and IV bits.

Instead of only looking at the first bit of real keystream, the idea can be
extended such that a modified version of the cipher is considered. In the modi-
fied version, we also look at the cipher’s output during its initialization rounds,
output which is normally suppressed. Assuming a cipher with l initialization
rounds, we denote the ith initialization round output function as fi(x), thus
giving us a vector

f1(x), f2(x), . . . , fl(x)︸ ︷︷ ︸
l functions

.

Thus, instead of only looking at the ANF and finding the maximum degree
monomial of a single function (z0 before), we now look at l different boolean
functions, and for each of the functions, we find the coefficient of the maximum
degree monomial. Such a sequence would have a format like

01100101 . . . 101︸ ︷︷ ︸
l coefficients

where each individual bit is the maximum degree monomial coefficient for its
corresponding function fi. We call this sequence of coefficients the maximum
degree monomial signature, or MDM signature, following the terminology in
[16].

Since the keystream is a pseudo-random sequence of digits, the keystream
produced by an ideal stream cipher should, to an outside observer, be indistin-
guishable from a random stream of bits. This means that if we look at each out-
put bit function fi(x), it should appear to be a random function fi : B → {0, 1}.
As noted earlier, for a random Boolean function, we expect the maximum degree
monomial to exist with probability 1

2 . Therefore, we expect the coefficients 0 and
1 to appear with equal probability, and for an ideal cipher, we expect to see a
random-looking MDM signature.

However, if the input space B is large, clearly the construction of a MDM
signature will result in too many initialization of the cipher to be feasible. There-



fore, we can only consider a subset S of the input space B. The remaining part,
B \ S, is set to some constant value, in this paper we selected it to be zero.

2.4 Finding the Subset S

The selection of the subset S turns out to be a crucial part of the MDM test. We
will soon see that depending on the choice of S, the resulting MDM signature
will vary greatly.

Consider a subset S of key and IV bits for the stream cipher Grain-128a [1].
Choosing S as key bit 23, and IV bits 47, 53, 58, and 64, we get the following
MDM signature:

000 . . . 000︸ ︷︷ ︸
187 zeros

111 . . .

Looking at the initial sequence of 187 adjacent zeros, out first conclusion
is that this does not appear to be a random-looking sequence. After this, we
will however start to see ones and zeros in a more mixed fashion. From this we
can intuitively say the it appears as if 187 initialization rounds are not enough.
However, Grain-128a is designed with 256 initialization rounds in a non-modified
implementation, and thus it appears as if the designers have chosen a sufficiently
high amount of initialization rounds.

To more concisely describe the result above, we state that we find nonran-
domness in 187 out of 256 initialization rounds. We will use this terminology
throughout the paper. Worth noting is also that this is a nonrandomness result,
since we have included both key and IV bits as a part of the subset S.

From the description above, it should not come as a surprise that our goal
now is to maximize the length of the initial sequence of zeros we can find in
the MDM signature. The ultimate goal is of course to find nonrandomness in all
initialization rounds, at which point it may be interesting to look for it in the
actual keystream of an unmodified cipher.

The selection of what bits to include from B into the subset S is important.
The composition of S will greatly influence the resulting MDM signature. Four
examples can be found in Table 1.

Table 1: The number of initial zeros in the MDM signature for four different
subsets S for Grain-128a.

K IV rounds out of 256

{} {1, 2, 3, 4, 5} 107
{} {91, 92, 93, 94, 95} 124
{23} {47, 53, 58, 64} 187
{1, 2, 3, 4, 5} {} 109



From the table above, we can clearly see that the choice of S is crucial. For
these examples, we have selected a subset size of five, i.e. |S| = 5, and included
both key and/or IV bits in S. The third row, where we find 187 consecutive
zeros, is actually the optimal result for a subset of size 5. Calculating the optimal
result is however not feasible as the subset grows larger. For the general case,
where the input space is B and the subset is S, we would have to test

(|B|
|S|
)

combinations. Again, using Grain-128a as an example, that would correspond to(
224
|S|
)
combinations, since Grain-128a has 96 IV bits and 128 key bits.

2.5 Greedy Approach

Since the selection of the subset S is important, we now turn our attention to
algorithms used to construct such a subset. Previous work, such as [16], has
proposed to use a greedy algorithm to find such a subset. The greedy approach
can, in short, be described through the following steps, which results in a subset
of a desired size:

1. Find an optimal starting subset of a small size (possibly empty, making this
step optional)

2. Add the n bits which together produce the highest number of zero rounds
to the current subset.

3. Repeat step 2 until a subset of the wanted size m is found.

To make the algorithm even clearer, consider the following example where
we start with the optimal subset of size five described earlier in Table 1. A few
steps of the greedy algorithm, with n = 1, would then look like this:

i0 : K = {23} IV = {47, 53, 58, 64}
i1 : K = {23} IV = {47, 53, 58, 64, 12}
i2 : K = {23, 72} IV = {47, 53, 58, 64, 12}
i3 : K = {23, 72, 31} IV = {47, 53, 58, 64, 12}
i4 : K = {23, 72, 31, 107} IV = {47, 53, 58, 64, 12}

The algorithm, in iteration i0 starts with the optimal subset of size 5. In
iteration i1 all possible remaining bits are tried, and the best bit, i.e. the one
giving the longest initial sequence of zeros, is selected and included in the subset,
in this case IV bit 12. The algorithm then repeat the same step for all remaining
iterations until a subset of the desired size is found, in this example |S| = 9.

This greedy algorithm has the same drawbacks as for greedy algorithms in
general—they may not find the global optimum, but rather get stuck in a local
optima, thus resulting in a poor selection of S.
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Fig. 3: One step of our improved algorithm. [11]

3 Improved Algorithm

Considering the possible issues of the greedy algorithm presented in the previous
section, we propose a more general solution which can achieve better results. The
main idea to solve this efficiency problem is to extend the naïve greedy algorithm
to examine more possible paths.

Rather than only considering the single best candidate in each iteration, our
improved algorithm will store and explore a multitude of possible paths. The
rationale behind this approach is that the second best candidate in one iteration
may be better in the following iteration of the algorithm, when more bits are to
be added.

Increasing the number of explored candidates in each step of the algorithm
will of course increase the computational complexity of the algorithm. We will,
however, later derive the an expression for calculating the total computational
effort required for certain parameters. In this way, we can easily estimate the
computation time required.

The algorithm can briefly be described as follows: The algorithm starts with
either an optimal set of candidates, or an empty set. Each member of set is called
a candidate, and every candidate is in itself a subset of key and IV-bits. For each
candidate, the algorithm now tries to find the best bits to add, to maximize the
initial sequence of zeros in the resulting MDM signature. This is done for each
of the original candidates, which means that this generates several new sets of
candidates. If this is repeated, the number of candidates clearly will grow to
unmanageable numbers. Therefore, the algorithm limits the resulting set of new
candidates with some factor.



A more formal and detailed description of the algorithm is described below.
A description in pseudo-code can be found in Algorithm 1 and Algorithm 2.
The algorithm is parametrized by three different parameter vectors: α, k, and
n. We also provide a graphical presentation of one iteration of the algorithm in
Figure 3, which we will refer to in the more detailed, textual, description below:

1. Consider a set of candidates from a previous iteration, or from an optimal
starting set. If this is the first iteration, it is also possible to start with a
completely empty subset of key and IV bits. In that case the algorithm starts
with a single candidate, where the MDM signature is calculated with all key
and IV bits set to zero.

2. For each candidate in the list, the algorithm adds the ki best ni new bits
and store them in a new list. Note that there now exists one such new list
for each candidate in the original list.

3. Merge all lists, sorting by the number of zeros in the MDM signature. This
gives a list of k0α0 . . . ki−1αi−1ki items, since there were k0α0 . . . ki−1αi−1
candidates in the beginning of this iteration, and each one has now resulted
in ki new candidates.

4. Finally, reduce the size of this merged list with the factor αi (0 < αi ≤ 1.0),
limiting the size of the combined list to k0α0 . . . ki−1αi−1kiαi items. If this
step is omitted, or if αi is set to 1.0, the number of candidates will grow
exponentially.

5. Repeat from step 1 until a subset S of the wanted size has been found.

We earlier stated that this improved algorithm was a more general approach
compared to the naïve greedy algorithm described in Section 2.5. Using our
new, improved algorithm and its input parameters k, n, and α, we can express
the previous greedy algorithm’s behavior as a specific set of input parameters,
namely α = [1.0, 1.0, . . .]), k = [1, 1, . . .], and n = [n, n, . . .]. Thus our improved
algorithm is a generalization of the previous algorithm, with many more degrees
of freedom.

3.1 Computational Cost

The improved algorithm may have a greater computation cost compared to the
previous greedy algorithm, because it considers more candidates. The compu-
tational cost will depend on the input parameter vectors, since they affect the
amount of candidates explored.

The total computational cost C is expressed as the number of initializations
required. The cost is expressed according to the following function, from [11],
where c is the number of iterations required (c = |k| = |n| = |α|), and b is the
bit space size b = |B|.

C(b, c,k,n,α) =

c−1∑
i=0

2∑i
j=0 nj

(
b−

∑i−1
j=0 nj
ni

) i−1∏
j=0

kjαj

 (2)



Algorithm 1 – SlightlyGreedy [11]

Input: key K, IV V , bit space B, maximum subset size m, vector k, vector
n, vector α
Output: subset S of size m.
S0 = {∅}
/* The set S0 contains a single empty subset */
for (each i ∈ {0, . . . ,m− 1}) {

for (each c ∈ Si) {
Lc = FindBest(K,V,B, c, ki, ni);

}
Si+1 = concatenate(all Lc from above);
sort Si+1 by the number of consecutive zeros in the MDM signature;
reduce the number of elements in Si+1 by a factor αi;

}
return Sm;

Algorithm 2 – FindBest [11]

Input: key K, IV V , bit space B, current subset c, number of best subsets to
retain k, bits to add n
Output: k subsets each of size |c|+ n.

/* let
(
S
k

)
denote the set of all k-combinations of a set S. */

S = ∅;
for (each n-tuple {b1, . . . , bn} ∈

(
B\c
n

)
) {

z = number of initial zeros using subset c ∪ {b1, . . . , bn};
if (z is among the k highest values) {

add c ∪ {b1, . . . , bn} to S;
reduce S to k elements by removing element with lowest z;

}
}
return S;



The expression can be derived using combinatorics. In the expression, the
power of two is related to the size of the different subsets S—a large subset
requires more initializations of the cipher. The binomial coefficient is the number
of possible subsets we can form given the current iteration’s ni. Finally, the final
product is needed because the algorithm reduces the number of candidates in
each iteration using the factors in α. Clearly, in practice, the actual running
time is also dependent on other factors, such as the cipher we are running the
algorithm on.

As a special case of the expression in Equation 2, an expression for the previ-
ous greedy algorithm can be derived. Recall that this algorithm had a constant
n, and since it only considered the best candidate in each iteration, both k and
α are all ones. Under these constraints, the expression can more concisely be
given as [11]:

C(b, c, n) =

c−1∑
i=0

[
2n(i+1)

(
b− n · i

n

)]
(3)

4 Results

To get any results from our proposed algorithm, the choice of parameters must
first be discussed. The algorithm is parametrized by the parameter vectors k,
n, and α. In this section we will explore and investigate how the choice of
parameters affect the final result of our algorithm. These new results will be
compared to the previous greedy algorithm as a baseline.

The greedy algorithm only had one degree of freedom, n, while the improved
algorithm has many more. We have performed a significant amount of simula-
tions, on several different ciphers, to be able to present results on how the choice
of parameters affect the results of the algorithm.

The tests have been performed on the stream ciphers Grain-128a [1], Kreyvium
[3], and to some extent Grain-128 [9]. For reference, the exact parameters used
for each result presented below are available in the Appendix of this paper.

4.1 Tuning the Greediness

To get a feeling for how the different parameters affect the result, we start by
varying the two parameter vectors k and α, while keeping n consistent, and
equal to an all-one vector. While k and α gives almost unlimited possibilities,
we have opted for the following simulation setup.

For every test case, a given iteration i will have the same amount of candi-
dates, which makes the computational complexity identical between the different
test cases. The input vectors k and α will of course be different for the different
test cases, which in turn mean that even if the amount of candidates is the same,
the actual candidates will vary between the tests. By designing the the test this



way, we wish to investigate how this difference in candidate selection affect the
final result of the algorithm.

Recall that ki govern how many new candidates we generate from a previous
iteration’s subsets. A high ki and low αi means that we may end up with several
candidates that have the same “stem”, i.e. they have the same origin list. If we
lower ki and instead increase αi we will get a greater mix of different stems,
while still maintaining the same amount of candidates for the iteration—in a
sense the greediness of the algorithm is reduced. Thus, we want to test some
different tradeoffs between the two parameters. In the results below, we name
the different test cases as a percentage value of the total amount of candidates
for each round. As an example, if the total number of candidates in a given round
is 1000, we could select a ki of 200, and a corresponding αi of 0.005, which gives
us 1000 candidates for the next round as well. We call this particular case 20
%-k since ki is 20 % of the candidates for the round.

As mentioned earlier, the simulations have been performed on different ci-
phers, in this case Grain-128a and Kreyvium. We have tried several combinations
of k and α as can be seen in the plot in Figure 4, which includes one plot for each
cipher. Note that Grain-128a has 256 initialization rounds, while Kreyvium has
1152 initialization rounds. The greedy algorithm is also included as a reference.
Note that the greedy algorithm will, due to its simplistic nature, have a lower
computational complexity since it only keeps one candidate in each iteration.
To be able to compare the results based on computational complexity, we have
plotted the graph based on logarithmic complexity rather than subset size. The
complexity is calculated using Equation 2, and the natural logarithm is then
applied on this value, so that a reasonably scaled plot is produced. This graph
can be seen in Figure 5, for the same ciphers as above. The maximum values for
each case is also available in Table 2.

From the results we note that a too low k seems to lower the efficiency of the
algorithm. The reason for this is probably that a too low k forces the algorithm
to choose candidates from lists with lower value. These candidates are then poor
choices for the upcoming iterations. We also note that our improved algorithm
consistently gives better results than the previous greedy algorithm.

4.2 Varying the Number of Bits Added in Each Iteration

In the previous section, a fixed n was used throughout all tests. In this section,
we will instead focus on the input parameter vector n and see how different
vectors affect the result of the algorithm. Recall that this vector decides how
many bits that is added to the subset in each iteration.

Intuitively, we expect a higher value of a single ni to yield better results, since
this also reduces the risk to get stuck in a local optima. However, having a large,
constant ni in all iterations, as explored in [16], means that later iterations
will be require very heavy computations. We therefore explore three different
variants, where the vector n contains decreasing values of ni. These results are
then compared to the previous greedy approach where a constant n of different
values where used throughout the whole algorithm.
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Fig. 4: Varying k and α, with ni = 1. Thick dotted black line is the greedy
baseline.
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Table 2: Maximum length of initial sequence of zeros in MDM signature when
varying k and α, expressed as actual count, and percentage of total initialization
rounds.

Grain-128a Kreyvium

Count Percentage Count Percentage

Greedy 187 73.0 862 74.8
20 %-k 203 79.3 896 77.8
0.5 %-k 198 77.3 876 76.0
0.2 %-k 192 75.0 877 76.1
min-k %-k 190 74.2 866 75.2

For these tests, the computational complexity will vary between the different
tests. This is different from the previous section where the tests were designed
to have the same computational complexity. Therefore the results are once again
presented in two ways, first as plots where the x-axis is the subset size, as seen
in Figure 6. The other plots present the results plotted by their computational
complexity. As in the last section, the complexity is calculated using Equation 2,
and the plot uses a logarithmic scale on the x-axis. This can be seen in Figure 7.
The results for each test case are also available in tabular form in Table 3.

From the results we note that regardless of our choice of n, our algorithm
outperforms the greedy variants. For Grain-128a, we also see that a higher ni in
the initial iterations seem to lead to better results which remain as the algorithm
proceeds towards larger subsets. The results for Kreyvium are not as clear, and
it seems like the size of the resulting subset is the most important property.

Table 3: Maximum length of initial sequence of zeros in MDM signature when
varying n, expressed as actual count, and percentage of total initialization
rounds.

Grain-128a Kreyvium

Count Percentage Count Percentage

Greedy 1-bit 187 73.1 862 74.8
Greedy 2-bit 187 73.1 864 75.0
Greedy 3-bit 187 73.1 851 73.9
2-2-2-2-2-2-2-2-1-. . . 203 79.3 868 75.4
2-2-2-2-1-. . . 199 77.7 872 75.7
1-. . . 195 76.2 869 75.4
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Fig. 6: Varying n. Thick black lines are the greedy baselines for n equal to 1, 2,
and 3.
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4.3 Results for Different Starting Points

In the previous tests, optimal subsets of size 5 has been used as a starting point
for the simulations. In this section, we compare the use of such an optimal start
to starting from an empty subset. A simple approach has been chosen, namely
to reuse two test cases from Section 4.1, namely the test case named 20 %-k for
both Grain-128a and Kreyvium. These test cases start with optimal subsets of
size 5.

The two new additional test cases start with an empty subset, and then
sequentially add one bit during the first five iterations. The remaining iterations’
parameters are kept the same between all test cases, so that the difference in
the initial start is isolated. In this way we can investigate whether this optimal
starting set is important or not.

The result of this experiment can be found in Figure 8, again with one subfig-
ure for Grain-128a and one for Kreyvium. The results are summarized in Table 4.
In summary, the differences are very small, and for Kreyvium non-existent, which
means that the choice of initial starting point may not be the most important
decision to make when selecting parameters for the algorithm.

Table 4: Maximum length of initial sequence of zeros in MDM signature with
different starting subsets, expressed as actual count, and percentage of total
initialization rounds.

Grain-128a Kreyvium

Count Percentage Count Percentage

5-bit optimal start 203 79.3 896 77.8
Empty subset start 201 78.5 896 77.8

4.4 Results on Grain-128

Apart from new results on Grain-128a and Kreyvium, tests were also performed
on Grain-128, a predecessor of Grain-128a which has been analyzed in other
works. In [16], a full-round (256 out of 256 initialization rounds) result was
presented using a subset of size 40, using only IV-bits, with an optimal starting
subset of size 6. This was found using a constant n = 2. This corresponds to a
parameter set of α = [1.0, 1.0, 1.0, . . .]), k = [1, 1, 1, . . .], and n = [6, 2, 2, . . .] in
our improved algorithm.

It would clearly be possible to find the exact same subset using our improved
algorithm, but we are also interested in seeing whether or not we can find other
subsets resulting in full-round results using our improved algorihtm. A new set of
parameters for our improved algorithm is constructed as follows: The possibility
to keep multiple candidates in each step is utilized, especially in the beginning
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Fig. 8: Different starting sets and how they affect the results.

where there are still small subsets. Using the improved algorithm, a smaller
subset of size 25 is found, which still gives us a full-round result of 256 out of
256 initialization rounds.

Using the complexity expression in Equation 2, the computational complexity
between the two results can be compared. We find that our improved algorithm
has a complexity which is a factor about 212 lower than the earlier result, while
still finding an equal amount of zeros in the MDM signature.

5 Related Work

Related work can be divided into two main categories: work related to the max-
imum degree monomial test, and work related to general cryptanalysis of the
discussed ciphers.

In [13], Saarinen described the d-Monomial test, and how it can be applied
in chosen-IV attacks against stream ciphers. In contrast to our work, and the
work done by Stankovski [16], Saarinen considers monomials of various degrees,
namely monomials up to degree d, therefore the name d-Monomial test. In addi-
tion to this difference, the choice of input subset bits is different. Saarinen only
considers consecutive bits either in the beginning or in the end of the IV. This
is in contrast to our work, where the subset is chosen freely as any subset of IV
and/or key bits.

Related to the work of Saarinen, the Maximum Degree Monomial (MDM)
was introduced by Englund et. al. in [8]. Rather than looking at several different
degrees of monomials, the MDM test only focuses on the maximum degree mono-
mial. The motivation behind this choice is that the maximum degree monomial
is likely to occur only if all IV bits have been properly mixed. In addition to this,
the existence of the maximum degree monomial is easy to find. The coefficient
of the monomial can be found by simply XORing all entries in the truth table.

In the previously mentioned work, a subset of the IV space was used in the
tests. In [16], a greedy heuristic to find these subsets was discussed. The greedy



algorithm started with an optimal, precalculated, subset of a small size, and then
added n bits in each step in a greedy fashion. In addition, both IV and key bits
were suggested for getting distinguisher and nonrandomness results, respectively.
Several different ciphers were analyzed, among them Grain-128 and Trivium.

Other work related to distinguishers for Trivium is [12], where the authors
concentrate on small cubes, and instead look at unions of these cubes. Another
difference is that they look at sub-maximal degree monomial tests.

Also partly based on Stankovski’s work is the work in [15], where the authors
propose two new, alternative heuristics. Here, the heuristic is modified so that it
does not maximize the initial sequence of zeros in the MDM signature. Rather,
in the first heuristic, called “maximum last zero”, the authors not only maximize
the initial sequence of zeros, but also ensure that the position of the current
iteration in the MDM signature is a zero as well. In their second heuristic, called
“maximum frequency of zero”, they instead look at the total amount of zeros
in the MDM signature. Their heuristics are applied to the ciphers Trivium [5]
and Trivia-SC [4]. Similar to our paper, they also mention the use of a non-
constant n, i.e. a n-vector, although the authors do not discuss the reasons for
this extension.

In [17] an attack called AIDA on a modified version of Trivium was presented.
In this case Trivium was modified so that it only had half of the original count
of initialization rounds. Related to this attack are the cube attacks [6], and
especially the dynamic cube attack [7] which was used to attack Grain-128.

Attacks on the newer Grain-128a can be found in the literature as well. In
[2] the authors present a related-key key attack requiring > 232 related keys and
> 264 chosen IVs, while in [14] the authors present a differential fault attack
against all the three ciphers in the Grain-family.

There is very limited work regarding the analysis of Kreyvium, possibly be-
cause the original Kreyvium paper is relatively recent, however in [18] the authors
discuss conditional differential cryptanalysis of Kreyvium.

6 Conclusions

This paper has described the design and motivation of the maximum degree
monomial test when designing nonrandomness detectors. The MDM test requires
a subset of key and IV bits, and in this paper we have designed and proposed a
new algorithm to find such subsets. Our algorithm is based on a greedy approach,
but rather than using a naïve greedy algorithm, we propose an algorithm which
is less likely to get stuck in local optima, and therefore yields better final results.
The algorithm is highly flexible, and parameters can be chosen and adapted to
get a both reasonable and predictable computational complexity. To validate
our algorithm, we have performed a significant amount of simulations to find
good input parameters to our algorithm. Simulations has been performed mainly
on the ciphers Grain-128a and Kreyvium, and the results show that our new
algorithm outperforms previously proposed naïve greedy algorithms.
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Table 5: Varying k and α [11]

Greedy

k { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 }

α { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 }

Improved (20 %-k)

k { 1000, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 100, 60, 60, 20, 20,
20, 20, 20, 20, 12, 6, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1 }

α { 1.0, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005,
0.005, 0.01, 1

60
, 1

60
, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 1

12
, 2

15
, 0.375, 0.5, 0.5, 0.5,

0.5, 2
9
, 1.0, 0.5, 1.0 }

0.5 %-k

k { 1000, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1 }

α { 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1
6
, 0.3, 0.5, 1

3
, 1.0, 1.0, 1.0,

1.0, 1.0, 0.6, 0.5, 0.4, 0.75, 1.0, 1.0, 1.0, 1.0, 2
9
, 1.0, 0.5, 1.0 }

0.2 %-k

k { 1000, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1 }

α { 1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 1.0, 1
3
, 1.0, 1.0, 1.0,

1.0, 1.0, 0.6, 0.5, 0.4, 0.75, 1.0, 1.0, 1.0, 1.0, 2
9
, 1.0, 0.5, 1.0 }

min-k

k { 1000, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1 }

α { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.6, 1.0, 1
3
, 1.0, 1.0, 1.0,

1.0, 1.0, 0.6, 0.5, 0.4, 0.75, 1.0, 1.0, 1.0, 1.0, 2
9
, 1.0, 0.5, 1.0 }



Table 6: Varying n [11]

Greedy 1-add

k { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 }

α { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 }

Greedy 2-add

k { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
n { 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }
α { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

Greedy 3-add

k { 1, 1, 1, 1, 1, 1, 1 }
n { 5, 3, 3, 3, 3, 3, 3 }
α { 1, 1, 1, 1, 1, 1, 1 }

2-2-2-2-2-2-2-2-1-...

k { 1000, 200, 200, 200, 200, 150, 50, 50, 50, 30, 15, 6, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1,
1, 1, 1 }

n { 5, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
α { 1.0, 0.005, 0.005, 0.0005, 0.005, 1

150
, 0.02, 0.01, 0.02, 0.02, 1

15
, 1

15
, 0.15, 0.2, 0.2,

4
45
, 0.1, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }

2-2-2-2-1-...

k { 1000, 200, 200, 200, 200, 150, 50, 50, 50, 30, 15, 6, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1 }

n { 5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
α { 1.0, 0.005, 0.005, 0.0005, 0.005, 1

150
, 0.02, 0.01, 0.02, 0.02, 1

15
, 1

15
, 0.15, 0.2, 0.2,

4
45
, 0.1, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }

1-...

k { 1000, 200, 200, 200, 200, 150, 50, 50, 50, 30, 15, 6, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

n { 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 }

α { 1.0, 0.005, 0.005, 0.0005, 0.005, 1
150

, 0.02, 0.01, 0.02, 0.02, 1
15
, 1

15
, 0.15, 0.2, 0.2,

4
45
, 0.1, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }



Table 7: Results on Grain-128 [11]

Greedy 1-add

k { 1000, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 60, 60, 20, 20, 20, 20, 20 }
n { 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
α { 1.0, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125,

0.0125, 0.00625, 0.01, 1
60
, 1

60
, 0.05, 0.05, 0.05, 0.05 }
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