Contributions to Preventive
Measures in Cyber Security

Linus Karlsson

UNIVERSITY

ISBN 978-91-7895-294-6 (printed)
ISBN 978-91-7895-295-3 (electronic)
Series of licentiate and doctoral theses
No. 126

ISSN 1654-790X

Linus Karlsson

Department of Electrical and Information Technology
Lund University

Box 118

SE-221 00 Lund

Sweden

Typeset using BIEX.
Printed in Sweden by Tryckeriet i E-huset, Lund, 2019.

© 2019 Linus Karlsson
Published articles have been reprinted with the permission from the respective
copyright holder.

iii

Abstract

Organizations and individuals maintain and use an ever increasing amount of
computer systems, either deployed locally, or in the cloud. These systems often
store and handle vast amounts of data, some of which is sensitive and should be
kept private. Regardless of where the data is located, there is a need to prevent
data from falling into the wrong hands. To this end, this dissertation presents
contributions to preventive measures in cyber security.

Trusted computing can be used to attest the integrity of code running on a
remote computer, and to store data securely using secure storage, for example in
a cloud setting. This dissertation presents contributions regarding the use of the
Trusted Platform Module (TPM) in high-availability systems, both for TPM 1.2
and TPM 2.0. It also discusses migration of keys from TPM 1.2 to the backwards-
incompatible TPM 2.0, while maintaining the same behaviour with regard to au-
thorization mechanisms. Contributions also include the use of trusted computing
to attest the integrity of network elements before they are enrolled into a Software
Defined Network, as well as protecting important assets of such network elements
by using isolated execution environments.

In the field of cryptography, the dissertation contains contributions regarding
the Maximum Degree Monomial (MDM) test, which is related to the construc-
tion of distinguishers and nonrandomness detectors. A new generalized algorithm
to find subsets for the MDM test is presented, together with evaluations of the al-
gorithm on several different stream ciphers.

The dissertation also contains contributions in the field of vulnerability assess-
ment using recommender systems. First, a reccommender system for user-specific
vulnerability scoring is presented, which scores vulnerabilities based on implicit
and explicit user preferences, together with domain-based information unique to
the field of vulnerability assessment. Finally, the dissertation also contains contri-
butions regarding privacy of such recommender systems, by protecting the privacy
of user preferences even from the provider of the recommender service.

Acknowledgements

I want to start this section by thanking my main supervisor, Martin Hell. During
my PhD, he has always provided great guidance — helpful, clear, and concise. His
door has always been open, and he has always been willing to provide help. After
our discussions, I have always left his office feeling encouraged, hopeful, and with
a clear idea of how to proceed. Not only does he possess the skills of a good
supervisor, he is also a great friend and I have enjoyed having my office next door
to him during my years at the university.

I also wish to thank my assistant supervisor Paul Stankovski Wagner for his
help during my research, and for being another great office neighbour. In addition
to the perks of having friendly neighbours in general, having my office squeezed
in between Martin’s and Paul’s offices ensured that I did not arrive 700 late in the
mornings — in fear of their witty comments about my working hours. I also want
to express my thanks to my other assistant supervisor Ben Smeets for his valuable
research input, in particular related to trusted computing. Finally, I wish to thank
Thomas Johansson for actually suggesting me to pursue a PhD.

During my time at the department, I have got to know many colleagues, par-
ticularly in the Crypto and Security group. First of all I wish to thank Jonathan
and Erik for all our geeky discussions: Jonathan for our random technical dis-
cussions about everything from the strict aliasing rule to thick microcontroller
manuals, and Erik for his random math-related monologues in my office, which
I have to admit I enjoy, even though he after several years still involuntarily sabo-
tages my office door every time he visits. I also wish to thank Pegah for giving me
a worthy competitor in bringing home-baked Thursday fika, Alexander for inter-
esting server management discussions, Nicolae for our research collaboration both
at RISE and the university, and finally Carl for significantly increasing my vita-
min D production by forcing me to eat lunch outside. During my time as a PhD
student, the research group has grown significantly, so instead of trying to name
all current and past members, I just wish to say that it has been a pleasure to get
to know all of you, and sharing a great environment for research and small-talk.

I also want to thank the administrative and technical staff at the department for
helping me during my time at the department. A special thanks to Erik Jonsson for
interesting discussions, and patiently handling all my requests for opening firewall
ports, leaving the department’s firewall with more holes than a Swiss cheese.

Finally, I also wish to thank my friends and family, you have all helped and
supported me during my PhD studies. In particular, I want to mention all inspir-
ing code evenings with Alex, weekly Thursday lunches with Paul, and daily Slack
competitions with Henrik. To my mom Carina, and my dad Hékan: thank you
for all your love and support throughout my life, and for always being there when
I need you.

Linus
Lund, September 2019

Contribution Statement

The following papers are included in this dissertation:

Paper I Martin Hell, Linus Karlsson, Ben Smeets, and Jelena Mirosavljevic. “Us-
ing TPM Secure Storage in Trusted High Availability Systems”. In 7he 6th
International Conference on Trusted Systems, INTRUST 2014, Beijing, China.
LNCS Vol. 9473, pp. 243-258, Springer.

Paper II Linus Karlsson and Martin Hell. “Enabling Key Migration Between
Non-Compatible TPM Versions”. In Trust and Trustworthy Computing,
TRUST 2016, Vienna, Austria. LNCS Vol. 9824, pp. 101-118, Springer.

Paper III Nicolae Paladi, Linus Karlsson, and Khalid Elbashir. “Trust Anchors
in Software Defined Networks”. In 23rd European Symposium on Research
in Computer Security, ESORICS 2018, Barcelona, Spain. LNCS Vol. 11009,
pp. 485-504, Springer.

Paper IV Linus Karlsson, Pegah Nikbakht Bideh, Martin Hell. “A Recommender
System for User-Specific Vulnerability Scoring”. In 14th International Con-
ference on Risks and Security of Internet and Systems, CRiSIS 2019, Ham-
mamet, Tunisia. In press

This dissertation contains the full version of this paper, with extended de-
scriptions and motivations of the recommender and its parameters.

Paper V Linus Karlsson and Nicolae Paladi. “Privacy-enabled Recommendations
for Software Vulnerabilities”. In 17#h IEEE International Conference on De-
pendable, Autonomic and Secure Computing, DASC 2019, Fukuoka, Japan.
IEEE.

Paper VI Linus Karlsson, Martin Hell, and Paul Stankovski. “Not So Greedy:
Enhanced Subset Exploration for Nonrandomness Detectors”. In Infor-
mation Systems Security and Privacy, ICISSP 2017. CCIS Vol. 867, pp.
273-294, Springer.

vii

The table below summarizes the responsibilities Linus Karlsson had in each paper:

Paper Writing Concepts Implementation — Evaluation

I yes yes YES -

II YES YES YES -
11 yes partial yes yes
v YES yes YES yes
\% yes yes YES YES
VI YES partial YES YES

Capital letters indicate roles where Linus Karlsson took primary responsibility for
the given role. The individual contributions of Linus are described in more detail
in the following paragraphs.

In Paper I, Linus was involved in writing and concept design. Linus solely
constructed the implementation to test the proposed concept.

In Paper II, Linus had the main responsibility for both writing and designing
the proposed solution. He also solely constructed the implementation to verify
the solution.

In Paper III, Linus was responsible for writing the sections about trust an-
chors in general, and everything related to the application plane. He was partially
responsible for the concepts in the paper: those related to the application plane.
Linus was also responsible for the implementation and performance evaluation of
the application plane network element enrollment.

In Paper IV, Linus was responsible for writing all of the system model and
implementation sections. Together with the other authors, he defined the overall
goals of the recommender, and was then responsible for the detailed design of the
system. He was solely responsible for the implementation of the system.

In Paper V, Linus was responsible for writing the sections about privacy pro-
files, isolated execution, implementation, and evaluation. Together with the other
authors, he defined the proposed privacy-preserving solution. He was solely re-
sponsible for the implementation and evaluation of the solution.

In Paper VI, Linus was the main responsible for writing of the complete paper.
He was partially involved in the design of the proposed algorithm. Linus was solely
responsible for the implementation of the newly proposed algorithms, as well as
the evaluation of the results.

A further description of the papers’ contributions 2o the research field is pre-
sented in Section 3.1.

viii

Other Contributions

The following peer-reviewed publications have also been published during my
PhD studies, but are not included in this dissertation.

* Christopher Jimthagen, Linus Karlsson, Paul Stankovski, and Martin Hell:
“eavesROP: Listening for ROP Payloads in Data Streams”. In Information

Security Conference, ISC 2014, Hong Kong, LNCS Vol. 8783, pp. 413—-424,
Springer.

* Linus Karlsson, Martin Hell, and Paul Stankovski. “Improved Greedy Non-
randomness Detectors for Stream Ciphers”. In 3rd International Conference
on Information Systems Security and Privacy, ICISSP 2017, Porto, Portugal.
pp- 225-232, SCITEPRESS.

* Nicolae Paladi and Linus Karlsson. “Safeguarding VNF Credentials with
Intel SGX”. In SIGCOMM Posters and Demos 17, Los Angeles, CA, USA.
ACM.

* Alexander Cobleigh, Martin Hell, Linus Karlsson, Oscar Reimer, Jonathan
Sonnerup, and Daniel Wisenhoff. “Identifying, Prioritizing and Evaluat-
ing Vulnerabilities in Third Party Code”. In 2018 IEEE 22nd International
Enterprise Distributed Object Computing Workshop (EDOCW), Stockholm,
Sweden. pp. 208-211, IEEE.

Contents

Abstract iii
Acknowledgements %
Contribution Statement vi
Contents ix
1 Introduction 1

1.1 Dissertation Outline

2 Background 5
21 Trusted Computing 5
2.2 Recommender Systems. 22
23 Cryptography 32
3 Contributions and Conclusions 41
3.1 Contributions e 42
3.2 Conclusions e 48
References 49
Included Publications 61
I Using TPM Secure Storage in Trusted High Availability Systems 63
1 Introduction 63
2 Overview of TPM 1.2and TPM 2.0 64
3 Scenario and Threat Model 68
4 Requirements 69

X CONTENTS

5 Proposed System Design 70
6 Security Analysis and Comparison of Properties for K, Generation 74
7 Unified API 75
8 Related Work 78
9 Conclusions e 78
References o i e 79
II Enabling Key Migration Between Non-Compatible TPM Versions 81
1 Introduction 81
2 Overview of TPM 1.2 and TPM 2.0 82
3 Goals 87
4 Migration Scenarios Lo L. 88
5 Certifiable Migratable Keys 96
6 Implementation L 97
7 Related Work 98
8 Conclusions e 99
References o o v i e 99
III Trust Anchors in Software Defined Networks 103
1 Introduction 103
2 Systemand ThreatModel 105
3 SolutionSpace 106
4 Implementation L. 109
5 Evaluation 111
6 Related Work 117
7 Limitations and Future Work 119
8 Conclusion 120
References e 120
IV A Recommender System for User-Specific Vulnerability Scoring 127
1 Introduction 128
2 Recommenders and Vulnerability Severity Ratings 129
3 SystemModel o 130
4 Implementation 135
5 Evaluationo 139
6 Related Work 142
7 Conclusions and Future Work 142
References o i e 143
V Privacy-enabled Recommendations for Software Vulnerabilities 145
1 Introduction 145
2 Preliminaries 147

3 Vulnerability Profile Privacy 150

CONTENTS xi

4 Implementation Lo 154
5 Evaluation 157
6 Related Work 157
7 Conclusion e 159
References e 160

VI Not So Greedy: Enhanced Subset Exploration for Nonrandomness De-

tectors 165
1 Introduction 165
2 Backgroundo oo 166
3 Improved Algorithm o 0L 173
4 Results 176
5 Related Work 182
6 Conclusions v v v i e 184
References e 184
Appendix. 186

Popular Science Summary in Swedish 189

Introduction

This dissertation was submitted for registration over an unencrypted connection,
to a web server running software that has passed end-of-life of security support.
Together with the dissertation itself, single sign-on credentials, useful to access all
digital university systems, were submitted for authentication purposes. All of this
data neatly packaged and transmitted over an insecure connection, to a vulnerable
remote host.

If you are a security researcher, you probably feel slightly distraught after read-
ing the previous paragraph. However, while being an inherently insecure situation,
this is the reality of many systems today — the system at the university is just one
instance of a widespread problem of lack of cyber security. Organizations main-
tain complex systems, at the same time as administrative responsibilities may be
unclear, systems may be forgotten, or there may just be a mindset of “if it is not
broken, why fix it?”. At the same time, growing amounts of information and ex-
pectations of easy access increase the risk of information manipulation and leakage
if systems are left vulnerable.

As the demand for increased computational power and storage has grown,
there has also been a shift in how computer resources are consumed. Tradition-
ally, data has been stored and used on-premise, or at least on dedicated hardware
bought and managed by the owner. However, the current trend is to instead rely
on computer resources managed and owned by someone else, commonly called
cloud computing. This ubiquitous access to computer resources relieves the user
from managing their own hardware, and reduces upfront costs for buying their
own hardware. It also allows for flexible scaling of resources, allowing the con-
sumer to increase or decrease the consumed resources depending on workload,
only paying for the actual resources consumed.

The storage and use of information on remote resources do require a discussion
about cyber security. While outsourcing the maintenance of systems to a remote
entity may reduce the risk of ending up with unmaintained systems — though
very much dependent on the type of service bought — it also introduces whole
new classes of questions related to information security. Some issues such as data

2 Introduction

ownership, availability guarantees, performance, and the type of service provided,
can be solved by using Service-Level Agreements as legally binding contracts. Such
legal measures can allow customer compensation if the terms are not met, thus
providing an incentive for the service provider to fulfil their promises. However,
legal approaches do only provide some mitigation affer an incident has occurred.

Consider the example of a leak of information from a cloud provider. While
the customer can demand compensation for a breach of contract, it does not
change the fact that the information is now leaked and potentially distributed
and publicly available. The point is that legal agreements, while important in
their own right, only go so far, since they mainly deal with mitigation, not preven-
tion. For the customer, the ideal situation would have been preventing the leak
from occurring in the first place.

Preventive measures instead focus on trying to prevent such incidents from
occurring at all. Such measures can take many forms, including risk assessments,
security policies, as well as purely technical measures used in the implementation
of systems. While all preventive measures are important and relevant, the focus of
this dissertation will be different technical preventive measures. In particular, the
following areas are considered in more detail, and they can be used as preventive
measures in the following ways.

* Cryptography can be used to protect data at rest and during transmission,
preventing information leakage.

* Trusted computing can be used to verify the integrity of code running re-
motely, preventing malicious code from processing information.

* Proactive approaches to assess software vulnerabilities can reduce the attack
surface of deployed software, preventing attacks.

This dissertation presents technical contributions to several areas of the pre-
ventive measures described above.

1.1 Dissertation Qutline

After this brief introduction and motivation to the scope of this work, the rest of
the dissertation is structured as follows. The following chapter, Chapter 2, provides
both technical background, together with the current state of research in topics
used throughout this dissertation.

In more detail, Section 2.1 starts by presenting an overview of Trusted com-
puting in general, together with technical background about several trusted com-
puting technologies, as well as their potential applications. This is followed by
Section 2.2, covering an overview of recommender systems, their possible appli-
cations in cyber security, and potential privacy implications of their use. Third, in

1.1 Dissertation Outline 3

Section 2.3 we discuss the area of cryptography, with an emphasis on symmetric
cryptography, stream ciphers in particular, and the analysis of such ciphers.

These three sections together present the background and context of the re-
search contributions. The contributions of each paper to the research field are de-
scribed in Section 3.1, which is followed by some final conclusions and remarks
in Section 3.2. Finally, in the second part of this dissertation, the individual in-
cluded publications are presented in their published form, although reformatted
for stylistic consistency with the rest of the dissertation.

Background

This chapter presents some background from the various research fields of the
contributions of this dissertation. We start by presenting the area of trusted com-
puting, which is then followed by recommender systems, and finally cryptography.

2.1 Trusted Computing

In modern society, computers are ubiquitous and take part in our lives in many
different ways. While some of them are used directly by end-users — devices such
as desktop computers, laptops, or smartphones — others are only used indirectly.
Such indirect use includes connecting to remote servers serving web pages, relying
on your bank to maintain your account balances, and relying on your mobile
phone network to service your calls.

Trusted computing is a technology to achieve #7ust in a computer system. The
definition of trust here is important, and the Trusted Computing Group (TCG)
defines it as follows:

“trust’ is meant to convey an expectation of behavior” [TPM20c¢].

From this definition, we can restate the goal of trusted computing as guaranteeing
a predictable behaviour of a computer system. This is the definition that will be
used throughout this dissertation when discussing trusted computing.

Providing such guarantees is important for the overall functionality of a sys-
tem. If the behaviour of crucial parts of the system is non-predictable, the be-
haviour of the system as a whole may be unknown. Non-predictable behaviour
may affect the security of the system as well; a subsystem performing unintended
tasks may affect the confidentiality, integrity, or availability of data.

Trusted computing can be used both to guarantee the behaviour of local de-
vices, but also to get guarantees of the behaviour of a remote system, thus covering
all of the different types of devices mentioned in the beginning of this section.
Practical uses of protecting the system integrity of local devices include ensuring
that a computer’s software has not been modified since last use, and verification of

6 Background

the behaviour of remote devices, which can be especially relevant in a cloud com-
puting context where the hardware is not controlled by the user.

A central concept in trusted computing is the reliance on a Trusted Comput-
ing Base (TCB), a set of hardware, firmware, and software critical to enforcing the
security properties of a system. Since the TCB is crucial to the guarantees pro-
vided by trusted computing, it is important that it behaves in the expected ways.
While this will be assumed for the remainder of this dissertation, we refer to tech-
niques such as formal verification [DKWO08; Kle+09; KG99] to actually achieve
this important property.

2.1.1 Attacker Model

For the work on trusted computing in this dissertation, the following attacker
model is used. The model is similar to attacker models of other works in trusted
computing such as [Mae+18; Petl7]. As described above in the definition of the
TCB, trusted computing requires trust rooted in the hardware. While software at
any level (except software in the TCB) may be compromised by an attacker, the
hardware is considered trusted and tamper-resistant from attackers throughout
this dissertation. In particular, the operating system may be compromised by an
attacker, which means that access control policies provided by the OS may not be
enforced. An attacker may also eavesdrop on or modify traffic between systems,
i.e. both passive and active network attacks can be performed. Finally, we assume
that cryptographic primitives such as symmetric and asymmetric ciphers, hash
functions, and digital signatures are secure.

While all technologies requires some level of trust rooted in hardware, the ex-
tent of which hardware components to trust differ between various trusted com-
puting technologies. Such details are discussed in connection to the description
of each technology.

2.1.2 Security Properties

When discussing trusted computing, it is helpful to look at smaller features, which
will be used throughout the dissertation. These features are called security prop-
erties. The following security properties will be used according to the definitions
below, following definitions from earlier work such as [Mae+18; Vas+12].

Isolation Also called isolated execution, ensures confidentiality and integrity of
code and data inside an environment. Such an isolated environment is typ-
ically provided by hardware in a trusted computing setting. This feature en-
sures that someone outside the isolated environment cannot read or modify
information inside the isolated execution environment.

Attestation A property which allows a local or remote party to request proof that
an application is in a certain state. This allows the verifying party to be

2.1 Trusted Computing 7

confident in the integrity of an application. By extension, such integrity
guarantees provides some guarantees of the behaviour of the attested code.
While it does not guarantee that the code runs according to a written spec-
ification, it does provide a guarantee that it is indeed the expected binary
implementation.

Sealing A process of protecting the confidentiality of data such that it can only be
read given that certain conditions are met. Common examples are sealing
data to a particular hardware device, or to a certain state (cf. attestation
above).

2.1.3 Roots of Trust

As described in the attacker model in Section 2.1.1, trust is generally rooted in some
hardware component, either directly or indirectly. A Root of Trust (RoT) can
be different depending on the functionality it provides. Among others, the TCG
defines the following roots of trust, which have been chosen due to their relevance
for this dissertation:

Root of Trust for Measurement The root from which measurement starts. There
are two main ways to construct the base for measurements: either a Static
Root of Trust for Measurement (SRTM), or a Dynamic Root of Trust for
Measurement (DRTM). An example of SRTM is when measurement always
starts at system startup. The measurements then include major parts of the
system: BIOS, boot loader, kernel, etc. With DRTM, measurements can
start at different points in time, but still give assurance that the system is in
a known state.

Root of Trust for Reporting Provides a RoT for attesting the origin and authen-
ticity of a platform state, such as measurements. This is used during attes-
tation of a system state.

Root of Trust for Storage Provides a RoT for storage that protects both the in-
tegrity and confidentiality of data.

2.1.4 Technologies

To achieve the guarantees of trusted computing, there have been several different
technologies proposed. Each technology provides some set of the security proper-
ties described in Section 2.1.2, which are used to provide the guarantees of trusted
computing.

The differences in selection of security properties provide us with several dif-
ferent technologies. While all of them can be said to support trusted computing,
they do so in different ways, are suitable for different use cases, and work on dif-
ferent hardware. While this dissertation focuses on a few selected technologies,

8 Background

it starts with a brief overview of several currently existing technologies. Later in
this chapter some of them are described in more detail — enough to provide a solid
foundation for the discussion of the contributions in the dissertation.

The first technology to be discussed is the Trusted Platform Module (TPM).
The TPM is typically a discrete chip mounted on a motherboard, which together
with software support can provide certain security properties. A TPM can be used
for attestation and sealing, but does not in itself provide an isolated execution
environment. Section 2.1.5 covers TPM in more detail.

Looking at the class of commodity desktop, laptop, and server hardware using
the x86 architecture, two well-known trusted computing technologies are Trusted
Execution Technology (TXT) and Software Guard Extensions (SGX), both de-
veloped by Intel. Intel TXT is described briefly in Section 2.1.7, but will not be
covered in detail, instead we focus more on Intel SGX.

Intel SGX is a more recent development, only available on Intel x86 hardware.
In short, SGX allows isolated execution of code inside something called enclaves.
The enclaves can be both locally and remotely attested, and both code and data can
be included in measurements. If desired, data can also be sealed. SGX is discussed
in more detail in Section 2.1.6.

While this dissertation will focus on the aforementioned technologies, some
work in this dissertation is not necessarily limited to a specific technology for
trusted computing, which makes it relevant to also briefly discuss alternative tech-
nologies. A few other relevant technologies are mentioned later, in Section 2.1.7.

2.1.5 Trusted Platform Module

The Trusted Platform Module (TPM) is a computer component, typically present
as a discrete hardware component on the motherboard, which can perform various
cryptographic operations. This includes functionality such as encryption, signing,
sealing, and attestation. The functionality of a TPM is defined by the Trusted
Computing Group (TCG) in their specifications, e.g., [TPM12; TPM20c]. There
are two main different versions of the specification in use today, TPM 1.2 and
TPM 2.0, which differ in some areas. However, both versions support the same
general functionality. Here we describe both versions, starting with TPM 1.2.

TPM 1.2

The first TPM 1.2 specification was released in 2003, with the most current revision
of the specification being [TPM12] released in 2011. The TPM can be used to build
a key hierarchy of asymmetric keys — useful for signing or encryption — where the
root key of this hierarchy is called the Storage Root Key (SRK) and is stored inside
the TPM. The SRK can have child keys of different types, but all child keys are
part of the key hierarchy by having their private key material encrypted by their
parent’s public key.

2.1 Trusted Computing 9

Another important key of the TPM is the Endorsement Key (EK). This key
is a 2048-bit RSA key and is only generated once, usually before an end-user re-
ceives the module [TPMI12]. The purpose of the EK is to have a Root of Trust for
Reporting (RTR), so that an individual TPM can be authenticated. This raises pri-
vacy concerns, since it means that an individual platform can be identified across
services if the EK were to be used as the sole key. To try to mitigate this issue, the
TPM supports the use of Attestation Identity Keys (AIKs). The purpose of the
AIK is to allow the use of different keys for different context, to avoid the privacy
issues of using a single key which uniquely identifies a TPM.

Platform configuration registers A TPM has at least 16 registers called Platform
Configuration Registers (PCRs). Each register can store a 160-bit hash value, suit-
able for holding the output of a SHA-1 hash. The value of the PCRs are cumula-
tive, such that after a reset (platform boot, or later), the updated value of a PCR
with index 7 is calculated as

PCR}®" = h(PCR;||value) (2.1)

where h is the hash function (SHA-1), and value is the value to add to the PCR.

Attestation In TPM 1.2, attestation is performed by using an AIK together with
PCRs. Attestation of the platform is performed as follows. During platform
boot, the platform state is measured, for example firmware, bootloader, operating
system, and configuration. Measurements are cumulatively stored in the PCRs,
which guarantees that if any part of the chain is modified, the resulting hash value
stored in the PCR will be different.

To perform attestation, the PCR hash values — which now represents the state
of the platform — are signed using the AIK. This resulting package is called a guore.
Since the AIK itself is tied to the very specific TPM it is loaded into, the quote
can be verified by a local or remote entity, by first verifying the signature, and then
inspecting the PCR values, which tells that the platform was in a certain state upon
creation of the quote.

Migration While the TPM is designed to provide secure storage of keys, such
that the private key material is protected by the TPM, it may be desirable to have
the same key material on several different TPMs in certain circumstances. An
example of such a situation is when older hardware — including the TPM — is
replaced, but encrypted data is to be retained. This requires the new TPM to have
the decryption keys from the older TPM. Another situation is when designing a
high-availability system with redundancy; each node then needs their own TPM
with the required keys.

TPM 1.1 introduced migratable keys to make it possible to migrate — or rather
duplicate — keys to another TPM [TPM11]. Keys can be marked as non-migrarable

10 Background

or migratable, so that migration can be either disallowed or allowed. To autho-
rize the migration of a key, the TPM owner must authorize the destination, and
the migration secret must be presented to the TPM. The implementation of non-
migratable keys also uses this scheme; for a non-migratable key the migration secret
is simply a secret value only known by the TPM (called tpmProof) thus making
migration impossible to authorize for users.

TPM 1.2 further introduced another type of migratable key, called Certifiable
Migration Key (CMK), which allows a third party to be in control over the destina-
tion of the migration. This third party, the Migration Selection Authority (MSA),
can be used to ensure that the destination of the migration is the intended, for ex-
ample by checking that it is another TPM.

Migration, and scenarios where it is suitable, are also discussed in more depth
when we make use of migratable keys as part of a solution to the problems dis-
cussed in Paper I. We also discuss migration in Paper II when we design a solution
to migrate keys from TPM 1.2 to TPM 2.0.

TPM 2.0

TPM 2.0 is a newer version of the TPM specification [TPM20c], and in many
ways, TPM 2.0 is a generalization of TPM 1.2. The key hierarchy has been re-
placed with a more general object hierarchy, the use of RSA has been extended
with support for several different types of cryptographic primitives, and secrets
have been partially generalized by the use of policies.

As the changes between the old and the new standard are significant, there is
no backwards compatibility with TPM 1.2. The lack of such may require signifi-
cant effort by system designers if a move from older TPM 1.2 hardware to newer
TPM 2.0 hardware is desired. Keys may require conversion, and the mismatch of
features between TPM 1.2 and TPM 2.0 can cause issues with authorization, mi-
gration, and other tasks. Paper II of this dissertation tries to solve such issues by
describing ways to achieve the old TPM 1.2 behaviour using the new functionality
of TPM 2.0.

The goal of this section is to highlight some differences between TPM 1.2
and TPM 2.0 which will be important for the remainder of this dissertation. For
more details, refer to the specification [TPM20c], or comprehensive guides such

as [ACGI15].

Duplication Migration has been renamed to duplication in TPM 2.0, which is a
more truthful description of the functionality, since the keys are indeed duplicated
rather than moved. There are also differences regarding the possibility to perform
duplication in the first place. While TPM 1.2 has migratable and non-migratable
keys, TPM 2.0 has two new properties: fixedTPM and fixedParent, which is set on
keys upon their creation. If the former is set on a key, it is never allowed to leave
the TPM. If the latter is set, the key is fixed to its parent, and cannot be duplicated

2.1 Trusted Computing 11

on its own, but might be duplicated indirectly if duplication of the parent key is
allowed.

There is no longer a migration secret connected to keys in TPM 2.0, instead
authorization is performed using the more general framework of policies, which
will be described next.

Policies Policies is a new general authorization mechanism in TPM 2.0, which
can be used to authorize several different operations on objects in the TPM. As
mentioned earlier, a policy can be used to authorize migration, but also to au-
thorize for example regular usage of a key. Policies work by including a value
authPolicy into a key upon creation time. The policy is calculated by building
a hash chain of individual policy commands, called policy assertions. For an exam-
ple see Figure 2.1 which outlines the idea. When calculating the policy hash, the

PCR; Auth value

000..00 —| TPM2_PolicyPCR a53..1d —»’ TPM2_PolicyAuthValue }—» 7c9..3a

Figure 2.1: Calculation of the authPolicy for a key requiring both PCR values and a secret
value, called the auth value

TPM first starts with an all-zero hash, then for each consecutive policy assertion
the previous hash value is concatenated with the output from the policy function,
and then hashed again as:

policyDigest™" = h(policyDigest || policyAssertionOutput) (2.2)

similar to how the PCR values are updated in (2.1). The output from the policy
assertion is based on the provided parameters. Using TPM2_PolicyPCR as an ex-
ample, the output will depend on the selection and values of PCRs. When the
TPM performs access control, it executes the policy assertions, and then compares
the calculated hash with the value stored in the authPolicy field of the object.

Since the authPolicy is a hash value, we note that the order of the policy
assertions is important. Evaluating two policy assertions in a different order will
result in a different hash value. Chaining several policy assertions in sequence
means that both assertions need to be valid for the authorization to be true, thus it
can be seen as a logical AND. To realize a logical OR, a separate policy command
is required, TPM2_PolicyOR. This policy assertion is true if any of the previous
branches is true.

Throughout this dissertation, we will describe policy chains using figures sim-
ilar to Figure 2.2. The final hash value, stored in the object’s authPolicy, is the
result of the evaluation of the final (bottom) policy, thus the figures should be eval-
uated from top to bottom. Using Figure 2.2 as an example, access to the object is
granted if any of the following two conditions are met:

12 Background

TPM2_PolicyPCR

'

TPM2_PolicyAuthValue TPM2_PolicySigned

o~ 7

TPM2_PolicyOR

Figure 2.2: Example of a policy chain with TPM2_PolicyOR

1. The PCR values match some desired values and a correct authorization se-
cret is given.

2. A valid signature can be provided over some parameter.

By combining logical AND and logical OR in this way, it is possible to construct
a wide variety of policy assertions.

2.1.6 Intel SGX

Intel Software Guard Extensions (SGX) is a set of instructions built into mod-
ern CPUs produced by Intel. Being a trusted computing technology, it provides
several different security properties, including isolation, attestation, and sealing.
By providing the different security properties within the processor itself, it is now
enough to trust only the CPU vendor. This is opposed to for example the TPM,
which requires trust in both the TPM vendor for attestation purposes, and the
processor that executes the machine code.

The instruction set was first proposed in 2013, separately describing isolated
execution [McK+13], and attestation and sealing [Ana+13]. The first hardware
with support for SGX was shipped in 2015, starting with Intel’s Skylake architec-
ture.

Since SGX is an extension of the instructions supported by the CPU, applica-
tions can use SGX specific instructions to use the various security properties. The
most central concept in SGX is the enclave. An enclave is a trusted execution
environment (TEE) where code and data can be loaded at creation time. After
creation, the code can be measured for attestation purposes, and execution of the
enclave is done in isolation, so that no other process or enclave on the system can
read its memory.

SGX2 is an extension to the original SGX specification, which adds a set of
extra instructions related to SGX memory and thread management. The instruc-
tions are described in great detail in [Int19], but are not discussed here, since SGX2
has not been used in this dissertation.

The life cycle of an enclave is described next, followed by the security proper-
ties, and their specific implementation and usage in SGX.

2.1 Trusted Computing 13

ECREATE |——{ EADD Qﬂ] EEXTEND }Ja EINIT

creation

;
] EENTER —— EEXIT }J

Y
EREMOVE ﬂ

Figure 2.3: Overview of enclave life cycle with instructions used in the creation, use, and
teardown stage

use

teardown

Enclave Life Cycle

An overview of the life cycle of an enclave can be seen in Figure 2.3. The enclave is
first created using ECREATE, which creates internal structures with metadata about
the enclave. This is followed by repeatedly calling EADD for each 4 KiB page of
memory to add to the enclave. This copies memory from unprotected memory
into the EPC of the enclave. If desired, EEXTEND can be called to measure 256 bytes
of memory of the enclave. The measurement will be stored in a measurement log,
which can later be used to attest the integrity of the enclave. EEXTEND needs to be
repeated for every 256 byte block that should be measured.

When all desired pages has been added to the enclave, EINIT should be called
to finalize the creation stage. After this, no more pages can be added to the enclave,
and the measurement of the added pages will be finalized.

After initialization, the enclave code can be executed. This is done by calling
EENTER, which starts execution of enclave code at a predefined location. The en-
clave then continues execution until either a controlled exit occurs using EEXIT,
or until an exception or interrupt occurs, which will be handled by AEX. To avoid
clutter, the AEX flow is not described in Figure 2.3, but after AEX, execution can
be resumed in the enclave by issuing ERESUME.

Isolation

Recall that isolation, or isolated execution, means that code and data are stored
within an isolated environment. An entity outside the isolated environment should
not be able to read or modify data within the environment. This section briefly
describes the various means SGX has to provide isolation. For a more in depth
description, refer to [McK+13] and [Int19].

14 Background

An interesting property of SGX is that enclaves provide isolation from other
processes on the system, the operating system, hypervisors, as well as other en-
claves. This allows several — potentially mutually distrusting — enclaves to coexist
on the same system while still providing isolation guarantees.

A special area of the system memory, called the Enclave Page Cache (EPC), is
used by enclaves to store data. This area cannot be accessed by peripherals, other
enclaves, or other parts of the system, including hypervisors or operating systems.
This is enforced by the memory controller in the CPU, which uses the Enclave Page
Cache Map (EPCM) structure which stores information about each page in the
EPC. The EPCM is then used by the processor to make access control decisions
when enclave memory is accessed. The contents of the memory is also encrypted
so that enclave data is never stored in DRAM in plaintext, since the CPU is the
only trusted agent in the SGX model.

To maintain isolation of the enclave, the entry and exit of enclaves is con-
trolled and done with the EENTER and EEXIT instructions, respectively. This also
ensures that the enclave can only be entered at predefined locations. In case of an
interrupt or an exception, the enclave will save its state securely using a process
called Asynchronous Enclave Exit (AEX). AEX ensures that an exception or inter-
rupt handler in an untrusted domain outside the enclave cannot gain access to the
internal enclave state.

Attestation

An important part of SGX is the possibility to perform attestation of enclaves.
A key component of attestation is to first get a measurement of the code and
data of the enclave. There are two important measurement registers related to
attestation in SGX, MRENCLAVE and MRSIGNER. Both registers are 256 bit wide,
and store SHA-256 hashes. MRSIGNER is a hash of the public key that has signed
the enclave, thus identifying the author, while MRENCLAVE stores the hash of code
and data that is included during enclave creation, which will be described more in
depth below.

MRENCLAVE is calculated during the creation of an enclave during the addition
of pages to the EPC occurring between ECREATE and EINIT. The measurement
calculation is shown in Figure 2.4. The MRENCLAVE measurement register is ini-

————————————————————————————————

EADD/EEXTEND (EADD/EEXTEND

I I D \
! ! I ! I
I I \ I L \
I I I I

SHA_Init SHA_Update > --- = SHA_Update — SHA_Final — MRENCLAVE
| _Ini }—ﬂ p }»»1 ‘»’ p }—v—’{: ‘ _Fina }—»1 l

o _____ | o _____ 1 o _____ 1 o _____ |

Figure 2.4: Overview of MRENCLAVE derivation during enclave creation

tialized during ECREATE. Then, after each successive EADD and EEXTEND, the hash
is updated. A call to EADD will update the hash with metadata about the page that

2.1 Trusted Computing 15

was added to the EPC, for example security properties, while a call to EEXTEND
will update MRENCLAVE with the content and metadata of a 256 byte data chunk.

SGX allows local attestation between enclaves on the same host, as well as re-
mote attestation where an entity wishes to attest the integrity of an enclave running
on a remote host. This dissertation only considers the latter. However, the local at-
testation sequence is relevant to understand how the remote attestation sequence

works, thus both will be described below.

An overview of the local attestation flow can be found in Figure 2.5. The goal

| MO, |
: Q— 1
1 Enclave A |« Enclave B !
! ® ‘
! Application A Application B 1
} Single host i

,,,

Figure 2.5: Overview of local attestation flow in SGX

of the local attestation flow is for Enclave B to ensure that Enclave A is running on
the same host as itself, that it is running inside an enclave, and that the expected
code is running. This is performed with the following steps [Ana+13]:

1. Enclave B sends its MRENCLAVE value to Enclave A.

2. Enclave A calls the EREPORT instruction to generate a report structure, in-
tegrity protected using a MAC, containing data including MRENCLAVE and
MRSIGNER. The report is sent to Enclave B. Note that the key used to create
this MAC is only known to Enclave B and the CPU itself, it is 7oz known
by Enclave A. This proves that the report was created by trusted hardware,
and not forged by Enclave A itself.

3. Enclave B receives the report, and starts by verifying the MAC using its
report key, retrieved by EGETKEY. If the MAC is valid, the contents of the
report can be read, and Enclave B can verify the code and data integrity
using MRENCLAVE and MRSIGNER. If desired, Enclave B can now send its
own report to Enclave A, if mutual attestation is desired.

If we instead look at the remote attestation flow, a Verifier wishes to remotely
attest an enclave running on a remote host. An overview of the attestation se-
quence can be seen in Figure 2.6.

The numbered steps in the figure corresponds to the following steps in the
attestation flow [Ana+13]:

16 Background

@ | @ i 1 :

Verifier | Application [A%ﬂ'&fj&fn }
‘ © f ® |

@) ® @ |

|
|
|
I
I
I
A, ! Y
I
!
!
|
|
|

Attestation Quoting
Service Enclave

Figure 2.6: Overview of remote attestation flow in SGX

1. The Verifier issues a challenge to the remote host, challenging it to prove
that it runs code inside an enclave.

2. 'The (untrusted) application forwards the challenge, together with the iden-
tity of the Quoting Enclave to the Application Enclave. The Quoting En-
clave is an Intel-provided enclave.

3. The Application Enclave calls the EREPORT instruction to generate a re-
port structure, integrity protected using a MAC, containing data such as
MRENCLAVE and MRSIGNER. The report is generated by the CPU, using a
key only accessible to the CPU and the Quoting Enclave. The report is sent
back to the application.

4. 'The report is forwarded to the Quoting Enclave.

5. The Quoting Enclave verifies the report by checking the MAC using its
report key, retrieved by EGETKEY. If the MAC is valid, it creates a quote
structure, containing the report and then signs the quote with a private
platform-specific private key, using the EPID scheme [BLI10]. Since this
is a group signature scheme, it allows the creation of signatures without
revealing the identity of the signing CPU.

6. The signed quote is sent back to the Verifier.

7. 'The Verifier can now verify the EPID signature of the quote by contacting
an attestation service, typically the Intel Attestation Service (IAS), to ensure
that the signature of the quote is valid. If it is, it can extract the MRENCLAVE
and MRSIGNER fields and compare them to known good values.

After these steps, the Verifier can be sure that the enclave is: running inside an en-
clave on genuine hardware, and that the code and data in the enclave has not been
modified before it was started. These guarantees hold as long as the Verifier ac-
cepts the trust model of SGX. Note that the communication between Application
Enclave and Quoting Enclave is the local attestation flow described earlier, where

2.1 Trusted Computing 17

the Quoting Enclave wishes to attest the Application Enclave. Only if this local
attestation is valid, the Quoting Enclave will sign the quote and pass it on.
For a more in depth description of attestation refer to [Ana+13] and [Int19].

Sealing

While the enclave protects the integrity and confidentiality of data while the en-
clave is running in memory, it can also be desirable to persist data to non-volatile
media before the enclave exits. This can be done by using sealing, which can be
performed using several different policies in SGX.

Regardless of policy, the EGETKEY instruction is called together with the de-
sired policy, and a 128-bit key is derived and returned by the CPU. The key can
then be used for encryption and/or integrity protection of data, before the data is
persisted to disk. Also, regardless of policy, the derived keys are unique to the par-
ticular CPU that derives the key; two identical enclaves running on different CPUs
will derive different keys. The sealing policies can be categorized into two major
categories depending on the measurement register the key derivation is based on:
either MRENCLAVE-based or MRSIGNER-based.

In the first case, the sealing key will only be available to enclaves with the same
MRENCLAVE hash. This ensures that only a particular enclave implementation will
be able to unseal the data. However, this also means that an updated version of
the enclave, for example with security patches, will not be able to unseal data from
a previous enclave version.

In the second case, the sealing key will be based on the MRSIGNER hash, to-
gether with a product id, and security version number (SVN). The SVN can be
used to allow an upgraded enclave to access sealed data from a previous version of
the enclave. This makes the management of security patches easier, since sealed
data is accessible to newer enclave versions. It is also possible to seal data with-
out a product id, thus making it possible to share data between different enclaves
from the same vendor. For more details about sealing policies, refer to [Ana+13]

and [Int19].

Attacks on SGX

Since the design of SGX was made public, there has been a progression in research
related to potential attacks.

Several attacks have considered side-channel attacks related to memory man-
agement in Intel SGX, starting with the discussion of lack of protection against
side-channel attacks in [CDI16]. Fairly soon after these realizations, side-channel
attacks on SGX started to appear. In [G6t+17] the authors show a practical attack
that can extract the AES key used for decryption inside an SGX enclave. The at-
tack is based on cache-timing attack, and can extract the AES key in less than 10
seconds, and is performed outside the enclave, thus breaking the isolation prop-

erty of SGX.

18 Background

Other attacks include [Sch+17], which performs an attack on an RSA imple-
mentation running within an enclave. The attack is performed from within an at-
tacker enclave, and attacks another enclave running on the same host. It manages
to recover the private RSA key either partially with a single trace, or completely
when using multiple traces. Similarly, [Bra+17] shows that the recovery of a pri-
vate RSA key is possible, as well as the recovery of potentially sensitive genome
data. The extent of potential side-channel attacks is also discussed systematically
in [Wan+17].

One way to avoid side-channel attacks is to implement algorithms in a data-
oblivious way. In [Ohr+16] this is discussed in the context of machine learning
algorithms running inside SGX, where the authors propose data-oblivious algo-
rithms for several common machine learning methods. Also on the defensive side,
[Gru+17] presents Cloak, a technique to prevent attackers to observe cache misses.
The overall idea is to use hardware transactional memory, such as Intel TSX, which
can be used to ensure that certain memory stays in the processor cache for the du-
ration of the calculations, thus preventing cache-timing attacks. The performance
overhead is however heavily dependent on the amount of memory accesses in the
code.

However, the previously mentioned mitigation does not always work. In
[Van+18] the authors present Foreshadow, an attack based on the ideas from the
Meltdown attacks [Lip+18], but applied to SGX. The attack leaks information
from within the enclave, and also attacks the architectural enclaves such as the
Quoting Enclave.

While the envisioned use case for SGX is to run trusted code within an en-
clave, shielding it from the unprotected world outside of SGX, Schwarz et al. show
that malware can be executed within an enclave [SWG19]. Because of the isola-
tion property of enclaves, such malware enclaves may avoid detection from anti-
malware software running on the host.

2.1.7 Other Trusted Computing Technologies

While the previous sections have discussed trusted computing technologies used
later on in this dissertation, it is also valuable to briefly discuss other potential op-
tions. The main motivation behind this is that some contributions are not neces-
sarily tied to a specific trusted computing technology, but could be implemented
by using several others as well, as long as they provide the required combination
of security properties.

One technology is Intel TXT, which allows the use of a DRTM for an exe-
cution environment [TXT]. It allows for an application or operating system to
launch a Measured Launch Environment (MLE) of trusted code. Intel TXT uses
the PCR values of the TPM to store measurements, together with new instructions
to actually perform the launch of the MLE.

2.1 Trusted Computing 19

Related to the TPM, one variant of the TPM is the Mobile Trusted Module,
based on the TPM 1.2 specification, but with adoptions for mobile use cases. The
specification can be seen in [MTMI0], and for an overview of the functionality
the reader is referred to [EKO7]. There has been several proposed options for
actual MTM implementations, for example implementations based on TrustZone
(described next) [Win08], M-Shield [EB09], or as a physical chip [Kim+10].

Another technology is ARM TrustZone, available in ARM processors starting
with ARMVG in 2002 [ZZ16]. TrustZone provides two different worlds: a secure
world, and a normal world. The normal world runs a regular, rich, operating sys-
tem as well as all other regular software installed on the system. The secure world
typically runs a specialized trusted software stack, implementing the desired secu-
rity features. The processor ensures that software in the normal world cannot ac-
cess memory of the secure world, while the secure world has access to all memory:
both in the secure and normal world.

Other trusted computing technologies focus on other platforms, such as Sanc-
tum [CLDI16] for RISC-V, SecureBlue++ [BW13] for POWER, and Bastion [CL10]
for OpenSPARC. For surveys of other technologies, we refer to for example [ZZ16;
Petl7; Mae+18].

The different trusted computing technologies each provide a different API,
and different ways to use the security properties they provide. Ongoing efforts
to abstract differences between different technologies include for example Asylo
[Asy] and Open Enclave [OpE].

2.1.8 Research on Trusted Computing

With the previous sections describing the background of the various trusted com-
puting technologies, this section describes research trends as well as potential ap-
plications of the technology. Research on trusted computing covers a wide area,
and can have applications both on client-oriented devices, as well as in more server-
oriented use cases.

On client-oriented devices, BitLocker [Bit] is perhaps the most well-known
use of the TPM today, being available in certain Windows versions since the launch
of Windows Vista in 2007. BitLocker is a disk encryption solution, and can use
TPM sealing such that the disk encryption keys are only released when the boot
environment is unmodified.

On mobile devices, where use of ARM processors is widespread, use of Trust-
Zone is most common. Examples include the use of TrustZone in the Android
Keystore [And], and Samsung Knox allowing containers, useful to, e.g., separate
business and personal containers on a single device [KW16]. TrustZone can also
be used as a trust root to implement other technologies. An example is the Mo-
bile Trusted Module which can be implemented by the use of TrustZone as a root
as in [Win08]. While interesting, we will not consider such client-oriented appli-
cations further in this dissertation, and instead focus on more server-oriented use

20 Background

cases. We first related to virtualization and cloud computing, followed by privacy-
preserving measures.

Virtualization and Cloud Computing

There has been a lot of focus on the use of trusted computing technologies in
the area of virtualization and cloud computing. Starting with the TPM, which
in itself is not trivially shared between multiple virtualized machines, Berger et al.
proposed virtualization of TPMs, vIPM, in [Ber+06], allowing virtual TPMs to
be connected to virtual machines at the same time as trust in the vIPMs is rooted
in the single hardware physical TPM. Other approaches include para-virtualized
TPM sharing [EL08], and property-based TPM virtualization [SSW08].

A possible benefit of the cloud infrastructure is the possibility to increase avail-
ability. Migrating services between different physical hosts allows flexibility of
hardware maintenance, and is an import part of a cloud service. However, mi-
gration introduces difficulties when combined with TPMs (both physical and vir-
tualized), because of the underlying change in physical host. The problems are
discussed in papers such as [Dan+11] and [Wan+12].

In Paper I we also consider the availability problem by describing the use of
TPMs in a high-availability system (HAS). Instead of a virtualization approach,
we instead consider a system with multiple, independent, computational units
(CUs) which together constitute the HAS. We propose a solution for how each
TPM-equipped CU can share the same keys required to decrypt secure storage for
availability purposes, by describing a key migration scheme using the functionality
in either TPM 1.2 or TPM 2.0.

In Paper II the key migration features of both TPM versions are discussed in
depth, as we design a way to migrate key material from TPM 1.2 to TPM 2.0,
thus allowing the migration from old to new hardware while keeping the same
keys. Due to the lack of backwards compatibility between the two versions, this
requires careful considerations to maintain the same key material and behaviour
with regard to authorization.

Since SGX was presented in 2013, it has attracted much attention in virtual-
ization and cloud computing. Proposed use cases include distributed MapReduce
computations while maintaining confidentiality and integrity [Sch+15], shielded
execution of applications in the cloud [BPH15], running Docker containers inside
enclaves [Arn+16], and secure database engines [PVC18].

Network function virtualization (NFV) and Software-Defined Networking
(SDN) are two technologies often used together with virtualization and in the
cloud, since they allow an increased flexibility with regard to network manage-
ment. For an overview of respective technology, the reader is referred to [CFG14]
and [Mij+16]. While security in SDN networks is a broad topic in itself, there has
been previous research discussing trusted computing technologies in connection
with SDN. Examples include the discussions of securing inter-domain routing in

2.1 Trusted Computing 21

[Kim+15], securing NFV states in [Shi+16], and a framework to securely bootstrap
virtual network infrastructure in SDN [PG16]. In Paper III we also present contri-
butions to the security in SDN networks, by presenting work protecting creden-
tials and cryptographic context of network elements, as well as a secure enrollment
mechanism for network elements in a software-defined network. For both parts,
we utilize trusted computing technologies.

Privacy-preserving Computations

The isolation guarantees of SGX are also interesting from a privacy-preserving per-
spective. Performing privacy-preserving computations can be performed in many
ways, including fully homomorphic encryption [Gen09], secure multiparty com-
putation [Yao82], and lastly by using trusted execution environments, which will
be the focus of this section.

Privacy-related topics where SGX have been used are, e.g., a framework for
MapReduce computations [Sch+15], a sandbox to perform arbitrary calculations
on secret data [Hun+18b], functional encryption [Fis+17], multiparty computa-
tions [Kii¢+16; Bah+17], private web search [Mok+17; Pir+18], and in machine-
learning settings [Ohr+16; Cha+17; Hun+18a].

In Paper V we also use Intel SGX to design a privacy-preserving system, but
in the context of a recommender system (recommender systems in general, and pri-
vacy in recommender systems in particular will be discussed shortly, in Section 2.2
and 2.2.6, respectively). In this recommender system, sensitive information con-
sist of the user profiles, which are protected by designing an intermediary, running
inside an SGX enclave. The design using an intermediary is similar to the work
presented in [LM17], where the intermediary is verifiable by the client before it
is entrusted with sensitive information. In contrast to our work, the targeted rec-
ommender system is different, where Paper V considers a recommender which is
not collaborative, which makes the use of validation predicates unnecessary — ma-
licious input would only affect the profile of the user itself. Instead of blinding by
combining multiple inputs, we derive pseudo profiles, used to issue fake queries
together with the genuine query, similar to the approach discussed for private web
search in [Mok+17].

22 Background

2.2 Recommender Systems

The general goal of a recommender system is to provide recommendations from
a set of items to some user, the idea being that the recommendations are adapted
to the user’s interests or needs. Recommender systems are widely used in a lot of
different scenarios, including e-commerce, music, videos, social media, and many
others. The common denominator is that there is a large set of content, such as
books, songs, videos, or social media posts — more than the user can or wishes to
manually browse. The purpose of a recommender is to filter this large set, which
likely contains many items not relevant for the user, and present the filtered view
to the user to further interact with.

The end goal of presenting this filtered view can be one of many, a few examples
are listed below:

* In an e-commerce setting, the goal is to increase the sales. By providing
recommendations that the users are likely to be interested in, or at least
likely to buy, the revenue of the seller can increase.

* For a monthly fixed-rate streaming service for music or videos, the goal may
be to increase user satisfaction by providing recommendations of new or old
content.

* For content financed with advertisements, the goal of the recommender
could be to increase the ad revenue by recommending interesting content
to the users, increasing the chance that they stay on the service and are
exposed to more advertisements.

A conceptual view of a recommender system can be seen in Figure 2.7. The
recommender takes two inputs: user information and item information.

User information This can be any kind of information about a user, and the infor-
mation can be supplied both explicitly and implicitly by the user. Examples
of explicit user information would be user-stated preferences or properties
such as interests, ratings, or age. Implicit user information could instead be
automatically collected data about users, such as visited web pages, or pur-
chase history.

Item information This is instead information about the set of possible items to
recommend. This is highly dependent on the items in question, but com-
mon examples are price, manufacturer, and product type, in case of a rec-
ommender system for manufactured goods.

The recommender system combines user and item information, and outputs
a set of recommendations, which is a subset or ranking of items that is likely to be
relevant to the user in question. The output can be of many forms, some common
examples include:

2.2 Recommender Systems 23

User
information

Recommender

. H
system Recommendations

Iltem
information

Figure 2.7: Conceptual view of a recommender system

¢ A subset of all items, such that the subset contains items relevant to the user.

* A ranking of items, such that items are ordered according to their perceived
relevance to the user.

Recommender systems can generally be categorized depending on the internal
method used to generate the recommendations [Aggl6]. Three major methods
are: knowledge-based methods, content-based methods, and collaborative filter-
ing methods. They are described in more detail in the following sections.

2.21 Knowledge-based Methods

In a knowledge-based recommender system, the input of the recommender takes
the form of user requirements and item information, together with knowledge of
the domain the recommender works in. A distinctive feature of this type of rec-
ommender is that it does not work with user ratings or user history from previous
interactions, but rather with a set of user-specified requirements.

There are two major classes of knowledge-based system, case-based and con-
straint based [Ric+11]. Case-based systems are based on a similarity function,
which calculates the similarity between the desired item (user requirements), and
items actually available. Constructing the similarity function requires knowledge
of the domain in question, but after construction it can be used to support several
different interfaces. The user can either specify individual requirements directly,
or they can request items similar to other items. Both interfaces are possible be-
cause they both use a similarity function.

The other class is constraint-based systems. In these systems, the user typi-
cally provide their requirements in the form of constraints. In case of a house or
an apartment, it could be the minimum and maximum number of rooms, living
area, etc. The constraints do not have to explicitly map to item attributes; the de-
signer of the recommender system can use domain-specific rules to map between
user requirements and item attributes. Compared to case-based systems above,
the main difference lies in how case-based systems use a similarity function, while

24 Background

constraint-based systems use a set of rules that defines the mapping from require-
ments to items.

In general, knowledge-based systems are suitable in situations where items
are bought rarely, such as cars, houses, apartments, and similar expensive items
[Aggl6]. In these cases, it can be hard to gather enough history of purchase to
generate suitable recommendations. Requirements may also change with time,
consider the previous example of a recommender for real estate; it is very likely
that the user’s preferences have changed since the last time they bought a house
or an apartment — after all, there is a reason they are looking for something new.
Knowledge-based systems solve this by not trying to learn from past user be-
haviour, instead focusing on their current requirements, and use domain-specific
knowledge to try to compare these requirements to item attributes.

2.2.2 Content-based Methods

Content-based methods take the individual history of the user into account when
generating recommendations. By considering the user’s rating of previous items,
the recommender tries to find similar items that the user may like. This is done by
comparing the attributes of previously liked items, and finding other items with
similar attribute values. A typical example is a movie recommender system, where
a user has given a movie a high rank. The recommender will then look at the
attributes of the movie, and then try to find other movies with similar attributes,
and presents these movies to the user.

Content-based systems have both advantages and disadvantages [Aggl6]. Ad-
vantages include that newly added items can be recommended, since their at-
tributes can be compared with older items immediately. On the contrary, a well-
known disadvantage is that new users cannot be given any reasonable recommen-
dations, since they have not yet rated any item. This is an example of the cold-start
problem of recommender systems.

2.2.3 Collaborative Filtering

Collaborative filtering methods are typically designed around a rating matrix, such
as the matrix in Figure 2.8. The rating matrix is sparse, and contains the ratings
from a user u, of an item 5. Generating recommendations can now be seen as fill-
ing out this sparse matrix, such that unknown ratings are estimated by using data
from other parts of the matrix. An important distinction between collaborative
filtering methods and previously described methods is that collaborative filtering
also considers information from other users of the system.

Consider the rating matrix in Figure 2.8. The goal is to estimate the rating of
some unknown (g, ip)-pair in the rating matrix, for example the (u1, i3)-pair in
Figure 2.8, marked by the grey background.

A common methodology is to use neighbourhood-based collaborative filter-

ing, which works by finding neighbourhoods of two different types. A neighbour-

2.2 Recommender Systems 25

uo | 1 5

Uy > 4
U2 5

Us 3

Uy 1

Figure 2.8: Example of a rating matrix used in collaborative filtering

hood can either consist of similar users, or of similar items. Again, using Figure 2.8
as an example, the former case corresponds to finding users with similar taste to
u1, and then finding zheir ratings for the item 43. Thus, we look at ratings within
the column i3 from several users. This is called user-based collaborative filtering,
or user-user methods, and a more in-depth discussion can be found in [Her+99].

The latter case, finding items that are similar to 43, instead corresponds to
looking at ratings on the same row, for those items that are similar to 3. This
is called item-based collaborative filter, or item-item methods. One advantage of
item-item methods is that the relations between items are less likely to change, as
opposed to user-user relations. This can be used for performance optimizations,
since the online-phase of computations can be reduced [Sar+01].

2.2.4 Construction of Recommender Systems

In this section, some aspects the construction of recommender systems are dis-
cussed. We start by discussing similarity and utility functions, and how they are
used in the different recommender system methods. We then discuss how sev-
eral recommender system methods can be combined together — creating hybrid
recommender systems.

Similarity and Utility Functions

A concept used in several of the previously mentioned recommender methods is
similarity and utility functions. At first, a discussion and definition of the two kind
of functions are required; the definitions will then be used throughout the rest of
this dissertation. This is followed by examples of different similarity functions.
As the name implies, similarity functions are used to measure the similarity
between two values. In the general case, a similarity function can be defined in
two ways: as the similarity between two users or items as a whole, or between
two individual attribute values. The distinction is visualized in Figure 2.9, where
Figure 2.9a shows the case where the similarity function takes two complete items
as input, and outputs a similarity metric. In Figure 2.9b the similarity function is
instead defined between individual attributes. Also, while the figures show items
and item attributes, note that it is also possible to use users and user attributes

26 Background

attry

attro

[tem 1 [tem 1

Y Y

B B
A o 4T

attro

[tem 2 [tem 2

(a) Between two items (b) Between individual attributes

Figure 2.9: Two ways to define similarity functions (sim)

instead. Depending on the recommender type, it may also be applicable for the
similarity function to be defined between an item and a user. This is the case
for knowledge-based recommender systems, where user requirements and item
attributes are compared using a similarity function.

Utility functions can be defined in the same way as similarity functions, but
as the naming suggests, they are often used to give a more general metric of uzilizy,
as opposed to just similarity. Consider the example in Figure 2.10, where the user
requirements for a computer are compared to two different items. Assuming CPU,

User requirements
CPU: 3.0 GHz
RAM: 16 GiB
Price: 4000 SEK

e ™

Item 1 Item 2

CPU: 3.0 GHz CPU: 3.0 GHz
RAM: 16 GiB RAM: 16 GiB
Price: 4500 SEK Price: 2000 SEK

Figure 2.10: User requirements being compared with two different items

RAM, and price being the only possible attributes of a computer, which of the two
items matches best with the user requirements? If a strict definition of similarity
is used, clearly the more expensive Item 1 is more similar to the user requirements;
the desired price of 4000 SEK is clearly closer to 4500 SEK than to 2000 SEK.
While mathematically sound, this is most probably not the desired behaviour from
a user perspective; clearly, if the user can get the same specifications to a lower price,
that is more desirable. Therefore, it is reasonable to say that Item 2 has a higher
utility than Item 1. Utility metrics are highly dependent on the domain in which
they are used, while a lower price is generally more desirable than a higher price,

2.2 Recommender Systems 27

the opposite may be true for other attributes. However, the distinction between
similarity and utility can sometimes be unclear, and the notation varies between
different contexts.

After these generic descriptions, we now move on to the definitions used in the
remainder of this dissertation. With the regard to similarity and utility functions,
the following notation will be used:

* Similarity functions will compare individual attributes. Attributes can be
both user attributes, and item attributes. For consistency, the term similarity
Sfunction will be used both when comparisons are done based on similarity,
or based on a metric that could be considered more utility-based.

* Utility functions will be used to describe the utility of a compleze item for a
specific user. To calculate the utility, it will apply similarity functions to the
individual attributes, and combine the similarities to derive a utility metric.

The use is visualized in Figure 2.11.

attry
attro sim 1
[tem 5
attry, S| m 2
U
attry
attro sim n
User :
attry,

Figure 2.11: Use of similarity (sim) on attributes, and utility (U) functions to combine the
results, which will be used later in this dissertation

As mentioned earlier, and using the definitions above, similarity functions
need to be defined differently depending on the attributes they are used for. In
general, we define a similarity function to take two attributes, one item attribute
value v and one user attribute value called the zarger value t. The output of the
similarity function is a value between 0 and 1, and a higher value means a higher
similarity. Thus, more formally, for all similarity functions we have

0 <sim(t,v) <1. (2.3)

Examples of Similarity Functions A straightforward example of a similarity func-
tion is the distance function Simg, which returns 1 if the value v is equal to

28 Background

target ¢, and otherwise decreases linearly toward 0 as the difference between v and
t increases.

|t = o]

simage(t,0) =1 — — =L
maXxdise — MINdjg

(2.4)
where maxg;,; and ming;, are the maximum and minimum possible distances be-
tween ¢ and v. This scaling ensures that the output is between 0 and 1. For an
example of plot for some values, see Figure 2.12a.

While simg;,; is an example of a symmetric similarity function (it is mirrored
around v = t), similarity functions can also be defined in many other ways. Asym-
metric function can be useful in instances when the similarity metric should not
penalize values above the target value. Looking back at the computer component
example earlier, a computer with more RAM or faster CPU than the target value
should not be penalized. This can be realized using a similarity function such as

[t—v|

. ——— ifo<t
S”"nasyrn(t7 /U) — maXdjse — MINdjs

, 2.5
ifv >t @5)

which is also plotted in Figure 2.12b.
Another useful example is a scoring function, where the target value ¢ is not a
target value per se, but rather a form of weight.

SiMeore (£,) =t - v (2.6)

It is particularly simple to use if v € [0, 1], since the target value can then simply
be selected such that ¢ € [0, 1] as well, guaranteeing the output to be in the range
[0, 1] as well. A plot can be seen in Figure 2.12c.

1 1 1

—t=1.0
0.8 0.8 08 4|---t=0.7
------ t=05
0.6 0.6 0.6
0.4 0.4 0.4 .
0.2 0.2 0.2
—t=0.5 —t=0.5
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
v v v
(a) simgist (b) simasym () simscore

Figure 2.12: Similarity metrics plotted as a function of the value v, for different similarity
functions. The y-axis is the output from the similarity function, the target
value t is given in the legend of each line.

2.2 Recommender Systems 29

Hybrid Recommender Systems

Each of the three classes of recommender systems mentioned before has their own
advantages and disadvantages. Knowledge-based systems works well in a cold-start
setting, but does not consider user history. Content-based systems works well
when new items are added, but fails to present recommendations for new users.
Collaborative filtering methods can utilize ratings from other users, but may not
work well if the rating matrix is too sparse.

The idea of hybrid recommenders is to combine several recommender meth-
ods, such that they do not run in isolation, but rather together with other meth-
ods. This allows the hybrid recommender to benefit from the advantages of the
individual recommender methods, and hopefully avoid the disadvantages.

Hybrid recommenders can be constructed in various ways, depending on how
the different subsystems are interconnected, what input each subsystem has, and
how the output is constructed. Examples of constructions as well a classifications
are described in [Bur02], however, we will only focus on one particular construc-
tion, which is described next.

One straightforward way to construct a hybrid recommender is to construct
a weighted hybrid, which has a layout as in Figure 2.13. Each subsystem has the
same input, and the output is then calculated as a weighted average where each
individual subsystem has a certain weight w;. We will later return to this type of
hybrid recommender when we construct a recommender system in Paper IV.

| w2 | Weighted .
Input ﬁ—{ Recommender 2 }—> avegrage —— Recommendations

wﬂ,

Recommender n

Figure 2.13: Overview of a weighted recommender system

2.2.5 Research on Recommender Systems

Research in recommender systems can be made in several different ways. Focus can
be on presenting new or refined algorithms for the various recommender methods,
as well as introducing new use cases of recommender systems.

Significant advances, specifically in the area of collaborative filtering, have
been made during the course of the Netflix Prize [Net]. The competition, or-

30 Background

ganized by the media-services provider Netflix, took place from October 2006
until the winning team was announced in September 2009. The prize awarded
to the winner was 1 million US dollars, if the accuracy of the designed solution
beat Netflix's own recommender Cinematch by 10%. Together with the announce-
ment of the competition, Netflix also published a large dataset of anonymized user
rankings useful for training recommenders. The winning recommender, named
“BellKor’s Pragmatic Chaos”, from the combination of solutions from three dif-
ferent teams, finally achieved an improvement of 10.06%. The design is described
in three separate papers [Kor09; TJ19; PC09]. For other contributions related to
the prize refer to, e.g., [Zho+08; Tak+08] for some examples of systems using the
anonymized dataset.

Research is also focused on applying recommender systems in new areas to find
use cases that have not yet seen the potential benefits of recommender systems.
Some examples of use cases for recommenders include movie recommendations
[Dia+14; HK15], e-commerce [HZC07; Cas+11], music [SH15; KRS13], web ser-
vices [Zhe+09], or research articles [Wan+18].

In this dissertation, we consider the application of recommender systems in
the cyber security domain. The subject of cyber security is wide, and recommender
systems have been proposed to several different areas. Previous work in the area
includes the use or recommender systems to recommend cyber defence actions to
cyber warriors [Lyol4], detect unsafe coding practices and suggest fixes in Java
source code [NCE19], and predict attacks in a network using a graph of attack
paths [Pol+17].

More specifically, the use of recommender systems can also be applied to the
area of software vulnerability management. As new software vulnerabilities are
discovered, it is increasingly important for software vendors to discover, analyse,
and handle them. Vulnerabilities can arise both in code developed by the vendors
themselves, but can also be discovered in third-party libraries included in the soft-
ware package. Using a recommender system to aid in various parts of the vulnera-
bility management life cycle has been proposed in earlier work. In [Far+18] the au-
thors propose a recommender system to reduce time-to-vulnerability remediation
as well as total vulnerability exposure within an organization. Others have instead
looked at using recommender systems to propose actions to take after discovering
a vulnerability [Gad+16]. Text-mining is used in [LS18] to find vulnerabilities re-
lated to each other, which is then used to construct a vulnerability ranking.

In Paper IV we also construct a recommender system for vulnerabilities. Our
recommender is based on a hybrid approach (see Section 2.2.4) and the goal is
to produce a user-specific vulnerability scoring. This is in contrast to common
vulnerability scoring methods such as CVSS [CVSS2; CVSS3] used by NVD
[NVD] to provide a non-individualized vulnerability score. This recommenda-
tions are generated by combining traits from two of the previously mentioned rec-
ommender types, knowledge-based, and content-based, combined with domain-
specific knowledge of the field of software vulnerabilities.

2.2 Recommender Systems 31

2.2.6 Privacy in Recommender Systems

After discussing how recommenders can be used to aid in software security, we
now turn the focus to security of the recommender systems themselves. For rec-
ommenders to provide useful output to users, they clearly must store and process
information about every user of the system. Such data collection gives rise to pri-
vacy concerns, since the data can be used to build an intimate profile of a user’s
interests, opinions, identity, or other personal information, depending on the type
of recommender.

Earlier research has shown that the privacy risks of reccommenders exists in real
life. In [NSO08], the authors present a de-anonymization attack on the Netflix
Prize dataset. While anonymization techniques had been applied to the dataset
before being published by Netflix, the authors show that with knowledge of some
information about a user, their full record can be identified in the dataset. Applied
to the Netflix dataset, this means that knowing some information about a user’s
previously watched or rated movies, could allow an attacker to gain information
about all movies the user has watched or rated.

By using differential privacy [Dwo+06], the authors of [MMO09] present a de-
sign that builds privacy into recommender systems. They apply differential privacy
to the recommenders, while still maintaining a high accuracy despite the intro-
duced noise.

Potential privacy risks of collaborative filtering are also discussed in [Cal+11],
where the authors present inference attacks to get customer data by observing
public output from recommender system. Such risks are also one reason why
collaborative filtering methods are avoided in some settings, for example in the
recommender system presented in Paper IV of this dissertation. Privacy-preserving
methods for collaborative filtering tries to solve this, but are not covered further
in this dissertation, instead we refer to previous work in the area, e.g., [Zha+10;
PW03; Can02; PB07; PDO05].

In this dissertation, Paper V presents a privacy-preserving system to provide
recommendations for software vulnerabilities. The user profiles contain sensitive
information, since they can provide an observer with information about inter-
nal vulnerability management processes of the user. By using trusted computing,
specifically Intel SGX (see Section 2.1.6), and k-anonymity [SS98; Sam01], we
propose a solution that preserves the privacy of the user profiles, without requir-
ing modification of the recommender system itself.

32 Background

2.3 Cryptography

The area of cryptography covers a wide range of different functionality, e.g., mak-
ing messages unreadable to unauthorized parties, ensuring that they have not been
modified during transfer, and creating digital signatures to provide proof of au-
thenticity. The different algorithms that provide this functionality can be clas-
sified into different categories, called cryptographic primitives. Common cryp-
tographic primitives include one-way hash functions, symmetric encryption algo-
rithms, public-key encryption algorithms, and digital signatures. Such primitives
are commonly combined into cryptographic protocols, which provide a richer set
of features. An example of such a protocol is Transport Layer Security (TLS)
[RFC8446], which provides a secure channel with confidentiality, integrity, and
authentication. TLS achieves this by combining cryptographic primitives such as
encryption algorithms, and key exchange protocols.

The purpose of encryption algorithms — commonly called ciphers — is to con-
ceal messages such that they are unintelligible to an unauthorized party. Only an
authorized party can reverse the steps of the encryption — called decryption — and
retrieve the original message. An overview of the process can be seen in Figure 2.14.
A message m, also called plaintext, is sent into the encryption algorithm together
with a key K. The resulting encrypted message ¢, called ciphertext, is the result
from this encryption step. On the receiver’s end, the ciphertext is fed into the de-
cryption algorithm, together with a key K,4. The output from the decryption is
the original message m. This description is very general, and applicable to ciphers

in general.
m —— Encryption ¢ — Decryption m

K, Kq
Figure 2.14: Overview of encryption and decryption flow

Ciphers can be divided into two categories, depending on how the keys K,
and K are related. In asymmetric ciphers, or public-key ciphers, K, and K are
different, but mathematically related. One of the keys is kept secret, and is called
the private key, while the other key is made public for everyone, and is called
the public key, thus giving the alternative name public-key cipher. An important
requirement is that knowing the public key K should not help anyone calculate
the private key K 4. This allows the public key to be distributed freely, while K4
should be kept private.

In an encryption setting, the public key is K, and thus anyone can encrypt
messages to a certain recipient. While anyone can encrypt messages, only the user
in possession of the private key K4 can decrypt the received ciphertexts. Well-
known asymmetric ciphers include RSA [RSA78], which can also be used to create

2.3 Cryptography 33

digital signatures. Asymmetric cryptography will not be covered in more detail in
this dissertation, for more details refer to [Smal6], and instead we shift focus to
symmetric ciphers.

2.3.1 Symmetric Ciphers

If a shared key is used for both encryption and decryption, the cipher is called sym-
metric. While common, it is not a strict requirement for K, = K in symmetric
ciphers; the keys can also be different but closely linked, such that knowledge of
K. means that K can be easily calculated, and vice versa [Smal6]. For the re-
mainder of this dissertation, we assume that K, = K4 = K when discussing
symmetric ciphers.

Symmetric ciphers require the sender and receiver to first agree on a shared
key K, and then to keep this key secret, since anyone with access to the key can
decrypt ciphertexts. Symmetric ciphers can be designed in multiple ways, and can
in turn be classified into two categories: block ciphers and stream ciphers.

An overview of a block cipher can be seen in Figure 2.15. The differences

Block cipher
encryption

T

K

m; —»

— C;

Figure 2.15: Encryption of a plaintext block with a block cipher

from the general description of a cipher from Figure 2.14 earlier are that the key is
symmetric, and thus denoted simply by K, and that the plaintext and ciphertext
are divided into blocks of fixed size. One block of the message m is denoted m;;,
and the same is true for the ciphertext blocks ¢;. A block cipher is a permutation
from the plaintext space to the ciphertext space, but the permutation depends on
the key K, such that knowledge of K is required to map a block m; to ¢;, and
vice versa. Worth noting is that to use a block cipher, it must be combined with a
mode of operation, which uses the block cipher as a building block. For an in depth
discussion about block ciphers and modes of operation refer to [Smal6]. Instead,
we now move on to stream ciphers.

2.3.2 Stream Ciphers

A stream cipher is a symmetric cipher that works on a stream of symbols. The
cipher generates a keystream, commonly denoted by z, which is used both to
encrypt a message, and to decrypt a corresponding ciphertext. The keystream is
a pseudo-random stream of symbols generated by providing a key K and public
initialization vector I'V to the cipher.

34 Background

Encryption is performed by combining the keystream with the plaintext using
an output function h as

C; = h(mz, Zi) s (27)

where ¢;, m;, and z; are the i™® symbol of the ciphertext, message, and keystream,
respectively. In a similar way, decryption is performed by

m; = h_l(Ci, 2’1) . (28)

There are two main categories of stream ciphers, which differ in the way the
keystream z is constructed: synchronous and self-synchronizing stream ciphers. The
main difference is that synchronous stream ciphers generate keystream using only
key and IV, while in self-synchronizing stream ciphers, the keystream also depends
on previous ciphertext symbols. The most common type is the synchronous stream
cipher, which will be described in more detail below.

The general design of a synchronous stream cipher can be seen in Figure 2.16.
The cipher has an internal state o which for every symbol 7 is updated to the next

Figure 2.16: A general figure of a synchronous stream cipher, taking key and IV as input,
and outputting keystream

state 041 by the next-state function f, which can depend on the key, IV, and cur-
rent state 0;. For every symbol, the function g calculates the current keystream
symbol z;, which depends on the current state o;, the key, and the IV. Finally,
as in (2.7) and (2.8), the keystream is combined with the plaintext or ciphertext
to perform encryption or decryption, respectively. Stream ciphers generally also
have an initialization phase, performed before the ciphers start to generate actual
keystream. The initialization phase is not shown in Figure 2.16, but will be dis-
cussed in more detail later in Section 2.3.5.

The most common design of synchronous stream ciphers is the binary additive
stream cipher. This design has the following properties:

* Each plaintext, ciphertext, and keystream symbol is a binary digit.

* The output function h is the logical exclusive or operation (XOR), hereafter
denoted ®.

2.3 Cryptography 35

Thus, encryption of a plaintext bit m; and decryption of a ciphertext bit ¢; is made
with the output functions

h(mi, z;) = m; © 2 (2.9)
h_l(Ci, Zi) =c D z; (2.10)

using the keystream bit ;. We can easily show that this works since

hil(h(mi, 2i), %) =m; Dz zi =m,. (2.11)

It is worth noting that this is a design where encryption and decryption are done
in the same way — avoiding the need for separate implementations of encryption
and decryption, which is the case for some block cipher modes of operation, e.g.,
CBC mode.

The binary additive stream cipher above mimics another well-known cryp-
tosystem called the one-time pad. In a one-time pad, each keystream symbol z;
is independently and randomly generated, and then added to the plaintext just
as in (2.9). Furthermore, such a keystream must only be used once — giving the
cryptosystem its name — which also implies that the keystream much be at least as
long as the plaintext. While such a system may be inconvenient due to the large
keystream that needs to be distributed, it has an extremely strong security guaran-
tee, it is unconditionally secure. Next, we describe this and several other definitions
of security.

2.3.3 Security

What does it mean for a cipher to be secure? Indeed, there are several different
definitions of what security means in this context. While the terminology may
differ slightly in the field of cryptography, these are the definitions used throughout
this dissertation.

Unconditional Security

Unconditional security, or information-theoretic security, means that an adver-
sary cannot break the cryptosystem, even with unlimited computing power. As
described earlier, the one-time pad is an example of such a system.

Provable Security

In some cases, it may be possible to base a cryptosystem on a problem that is
thought to be hard. If it is possible to prove that breaking the cryptosystem is
related to solving some other well-known hard problem, the cryptosystem is said
to by provably secure. This is especially common in asymmetric cryptography,
where many cryptosystems are designed to be related to well-known mathematical
problems that are hard to solve.

36 Background

An example of such a system with a corresponding problem is RSA [RSA78],
which is based on the RSA problem, which can be stated as: Given a ciphertext
¢, and e such that ged(e, $(NN)) = 1, find the plaintext m such that m¢ = ¢
mod N.

Empirical Security

A weaker assumption is that of empirical security. A cipher is empirically secure if
empirical methods have been used to design and analyse it. The rationale behind
calling it secure is this: if a cipher has been thoroughly analysed during some longer
time frame, without any attacks being found, it can be seen as secure. While the
approach is pragmatic, there are no formal proofs for security, and a new attack
may be found in the future.

2.3.4 Attacks

Given that the whole purpose of a cipher is to conceal valuable information from
an adversary, it is only natural that ciphers are under attack from both adversaries,
as well as those wanting to select a cipher to protect their own information. Attacks
come in many forms, and can be categorized depending on their properties. In
this section, a few different kind of attacks and attack models will be described,
with focus on those that are relevant for this dissertation.

Key-recovery Attacks

The goal of a key-recovery attack is simple: to gain access to the secret key K.
Knowledge of the key allows an adversary to decrypt ciphertexts.

State-recovery

In a state-recovery attack, the goal is to recover the internal state of the cipher. In
the case of a stream cipher, knowing the internal state at time ¢ may allow an
attacker to construct a valid keystream from time ¢ and forward, which can be
used to decrypt ciphertexts. Depending on the cipher, it may also be possible
to calculate earlier keystream bits, if the next-state function f is invertible. In
addition, if both the next-state function f and the initialization phase is invertible,
the key can be recovered, thus turning into a key-recovery attack.

Distinguishers

In a distinguishing attack, the goal for the attacker is to determine if a sequence
of symbols comes from a stream cipher, or is just random data. Consider the sce-
nario in Figure 2.17. The goal of the distinguisher is to determine if the given
keystream z is produced by a cipher, or if it is just random data. Naturally, for
a given keystream, the distinguisher can always guess the correct answer with a

2.3 Cryptography 37

2z —| Distinguisher —— CIPHER or RANDOM

Figure 2.17: A distinguisher taking keystream z as input, and outputting a decision

probability of 0.5, simply by picking RANDOM or CIPHER uniformly random. Thus
a distinguishing attack is only considered successful if the distinguisher can guess
the result with a higher probability compared to a uniformly random guess. While
the attack is not as strong as for example a key-recovery attack, it is still useful in a
number of settings. First, it may be possible to use the distinguisher as a part of a
key-recovery attack, as done in [EJ05] and [H]J07]. Second, if an adversary knows
that a ciphertext is the encryption of one of two possible plaintexts, their respec-
tive keystreams can be derived, and passed through the distinguisher to determine
which of the two plaintexts that were likely sent. Third, the distinguisher is a use-
ful tool in the design of stream ciphers, since the keystream from a well-designed
cipher should appear random to an outside observer without the key. This third
and final use case is discussed in more detail next.

2.3.5 Stream Cipher Initialization and Design

In Section 2.3.2, an overview of synchronous stream ciphers is given, describing
the internals of the cipher and how keystream is generated. Recall that the IV is
public, and easily accessible to an attacker, thus it is important that knowledge of
the IV does not allow an attacker to gain information about the keystream. To
prevent this, ciphers can mix IV and key bits during an initialization phase, before
the cipher starts to output actual keystream symbols.

One possible way to perform initialization is to repeatedly apply the next-state
function f before the cipher starts to generate keystream. Each such repeated ap-
plication of the update function f is called a round. This approach is shown in
Figure 2.18. The initialization phase typically consist of a number of such initial-

Oi1l —| 0i]
¢

K,V ——

Figure 2.18: One way to perform the initialization phase by repeatedly applying the next-
state function f to update the state o;

ization rounds, and an important part of designing the cipher is to select a suitable
amount of rounds. If too many rounds are performed, the performance of the
cipher will suffer, since there is an increased delay before the cipher can start to

38 Background

output actual keystream. On the other hand, if too few rounds are used, it may
be possible to attack the cipher since the mixing of key and IV bits is insufficient.

To try to find such insufficient mixing, a chosen-IV attack can be performed.
As the name implies, in this setting the attacker can freely modify the IV of the
cipher. One way to perform such an attack is to look at certain keystream bits,
and analyse the algebraic structure of such a bit. One such attack was performed
in [Saa06], in which Saarinen used the d-Monomial test introduced by [Fil02] to
analyse the algebraic normal form (ANF) of certain keystream bits.

A Boolean function of b variables, f: 4 — Fy, can be written on ANF, which
has the following structure:

flay,...,xp) =coBcrx1 @ ... D cpxy B Cpr12122 D ... D CepT1x2 ... Tp,

where the coefficients ¢; € Fy describe if the term is included in the ANF or not.
The ANF consists of up to 2° monomials, with an average of 2°~! monomials in a
random Boolean function f. Furthermore, if k is the degree of such a monomial
(0 <k < b), the ANF has on average %(2) monomials of degree k. The reader is
referred to [Fil02] for proofs.

The previously mentioned average monomial count can be used to perform
statistical tests. In [Saa06], the x? test is used to analyse if the Boolean functions
of the ciphers’ keystream bits are biased, for monomials up to degree d = 4.

A similar approach was presented in [EJS07], where the d-Monomial test is
replaced with a Maximum Degree Monomial (MDM) test, where only the mono-
mial of the highest degree is considered, i.e., d = b. The rationale behind this
approach is that the maximum degree monomial is only likely to exist in the ANF
if there has been sufficient mixing of the IV bits. Furthermore, finding the coef-
ficient ¢;, of the maximum degree monomial can be done simply by calculating
Cm as:

em =P fl=). (2.12)

b
zelg

In this context, it is also relevant to mention AIDA and Cube Attacks, intro-
duced in [Vie07] and [DS09], respectively. These attacks are key-recovery attacks,
thus trying to derive the secret key of the cipher. In both papers modified versions
of the cipher Trivium [De 006] are attacked, where the modifications consist of re-
ducing the number of initialization rounds.

A property shared between [Saa06; EJS07; Vie07; DS09] is that they work
on a subset of IV bits. The selection of this subset is a problem in itself, since it
affects the outcome of the attack. In [Stal0], Stankovski considers this problem
and presents a greedy, iterative, algorithm to find subsets of increasingly large sizes.
In addition, subsets of both IV and key bits are considered. The author also defines
the MDM signature, which is used as a metric in the greedy algorithm. The MDM

2.3 Cryptography 39

signature is based on the MDM test described above; recall that the coefficient
of the maximum degree monomial can be found by summing over all entries in
the truth table. In the MDM signature this is extended, so instead of looking
at a single coefficient from the cipher’s first keystream bit, the output from the
(normally suppressed) initialization phase is considered instead. Thus, if a cipher
has [initialization rounds, the MDM signature will consist of [coefficients, each
one corresponding to the coefficient of the maximum degree monomial of that
particular output bit, giving a signature on the following form:

0000000111010110...101 . (2.13)

[coefficients

The idea of this metric is that the lack of ones in the beginning of the MDM
signature corresponds to an insufficient mixing of IV bits in the cipher, since the
maximum degree monomial has not yet been seen.

However, since finding the MDM coefficients requires summing over all en-
tries in the truth table, it is infeasible to consider all Boolean input bits, since this
would correspond to 2% invocations, where b = 128 or even more for modern
ciphers. Instead, the author tries to maximize the number of initial zeros in the
MDM signature, and greedily adds more IV bits to the subset to maximize this
metric.

In Paper VI, we consider precisely this problem of finding subsets for attacks
such as those described earlier. While [Stal0] selected the subsets in a greedy fash-
ion, we propose a generalized version, finding better subsets. The main observation
is that greedy algorithms risk getting stuck in local optima, which our generalized
algorithm avoids by keeping a list of several good candidates from previous itera-
tions. Furthermore, the algorithm can add more than one bit in each iteration, at
the expense of higher computational complexity.

Further work in the area has been done in [YLL19], where a new algorithm
is proposed, building upon the work in Paper VI. Instead of requiring the sum-
mation of all possible IV combinations (thus having a complexity of O(2") for a
subset of size 1), the authors use an algorithm to estimate the degree of the mono-
mial instead. This allows them to find larger subsets with lower computational
complexity.

Contributions and
Conclusions

This dissertation has focused on different preventive measures in the area of cy-
ber security. The different contributions can be visualized within the area as in
Figure 3.1, where only preventive measures that have been covered in this disser-
tation are included. After this, the contributions are described in more detail in
Section 3.1, followed by conclusions in Section 3.2.

P Preventive measures RN
/~ " Trusted computing \
I// - .\ - \\
' / Paper Il - Cryptography \
1 Paper| PR T i Lo
| : - : - : -

1 . - R |] B : |
| - E v : : T o
Y - . ~ PaperVI)
v Paper il : \ Paper IV~ o
N . PaperV : o
S e Vulnerability '

S - assessment -7

Figure 3.1: The different contributions of this dissertation to the area of preventive mea-
sures in cyber security. Each paper is positioned according to the area (or
areas) it contributes to.

42 Contributions and Conclusions

3.1 Contributions

In this section the main contributions of this dissertation are described. To give a
quick overview, the contributions are:

* A way of using TPM secure storage in high availability systems (Paper I),
where we describe a use case where the TPM is used to store key material in a
high availability system, consisting of multiple independent Computational
Units (CUs) for availability purposes. The secure storage must be duplicated
on each individual CU for availability purposes, and we describe a solution

for this, supporting both TPM 1.2 and TPM 2.0.

* 'The migration of keys from TPM 1.2 to TPM 2.0, while still retaining be-
haviour with regard to, e.g., authorization, PCR values, and migration, even
though the TPM 2.0 standard is not backwards-compatible by design (Pa-
per II). The proposed design utilizes new features of TPM 2.0 to achieve
the behaviour of TPM 1.2.

* A design to protect core assets and enrollment of network security elements
used in Softward Defined Networking (SDN) entities (Paper I1I). We de-
scribe both a way to protect core assets such as credentials by using isolated
execution environments, and also a mechanism to perform secure enroll-
ment of entities into the SDN by using remote attestation.

* Arecommender system that generates user-specific scorings for software vul-
nerabilities (Paper IV). The system takes explicit user preferences into ac-
count, together with information learned from previous interactions with
the system, and creates a user profile. The profile is then used to generate
a vulnerability scoring that is customized to the user, as opposed to other
severity metrics such as the CVSS score.

* A privacy-preserving mechanism that can be used to protect the client pro-
file in recommender systems for software vulnerabilities (Paper V). Such
profiles contain information about how clients have interacted with previ-
ous software vulnerabilities, as well as client preferences about vulnerabil-
ity properties, which may be undesirable to share with the service provider.
The proposed solution protects the privacy of the data such that the service
provider cannot infer the real profile of a particular client.

* Finally, in the field of cryptography, an algorithm to find subsets for the
Maximum Degree Monomial test (Paper VI). The algorithm is easily tuned
to the desired computational complexity, and produces better results com-
pared to previous greedy approaches.

The following sections describe each contribution in more detail.

3.1 Contributions 43

3.1.1 Using TPM Secure Storage in Trusted High Availability Systems

In Paper I we describe how to use TPM secure storage in a High Availability Sys-
tem (HAS). A HAS consists of multiple, redundant, Computational Units (CUs),
where each CU should be able to use the secure storage. In such systems, malfunc-
tioning computational units can be removed and replaced with new units without
downtime. This requires the secure storage to be duplicated on each individual
CU for availability purposes.

We consider a scenario with four major actors: a CU manufacturer, a HAS
manufacturer, customers, and a Trusted Third Party (T'TP) during migrations. In
the scenario, we consider a threat model where customer employees can copy data
from drives in the HAS cabinet, that complete CU boards can be stolen, and that
employees of the HAS manufacturer can access HAS data during assembly. Apart
from the threat model, the paper also specifies several other requirements that the
solution should fulfil. The overall goal is to protect stolen encrypted data from
being accessed in decrypted form, while still maintaining availability guarantees
using multiple redundant CUs.

The proposed solution creates a parent key, which is identical for all CUs pro-
duced by a manufacturer. By making this key a CMK in TPM 1.2, or by using
policies in TPM 2.0, migration of the key can be restricted such that only the TTP
can migrate the parent key to a new TPM. Assuming the TTP can be trusted,
this guarantees that the parent key can not be migrated outside a TPM. After this,
a customer-specific key is generated, in one of three possible ways, and placed as
a child to the parent key. This key is not explicitly migratable, which means that
even a malicious employee of the customer cannot migrate the key. The key can,
however, be loaded into any CU produced by the CU manufacturer, since all units
share the same parent key.

A security analysis is then performed, showing that the proposed solution ful-
fills all the requirements, and suits the threat model as described in the beginning
of the paper. The analysis continues by comparing the three different ways to gen-
erate the customer-specific key, and describes how the different options affect the
security.

To prove the feasibility of the solution, the paper also describes in detail the
TPM commands that need to be used in each step of the solution, including parent
key generation, customer-specific key generation, and CU replacement. Com-
mands are provided for both TPM 1.2 and TPM 2.0. To further show that the
solution works, the solution was also implemented using TPM emulators for both

TPM 1.2 and TPM 2.0.

3.1.2 Enabling Key Migration Between Non-Compatible TPM Versions

In Paper II we provide an upgrade path from TPM 1.2 to TPM 2.0 by designing a
solution that migrates keys from TPM 1.2 to TPM 2.0, and still retains the original
behaviour of the key with regard to authorization. Because of the differences and

44 Contributions and Conclusions

lack of backwards compatibility between the two TPM versions, this is a non-
trivial task, but it can be achieved with careful use of the flexible policies in TPM
2.0 to simulate the behaviour of the TPM 1.2 standard.

We start by defining a set of requirements, such as keeping the same key ma-
terial, keeping authorization requirements, and supporting all key types. The
requirements essentially guarantees that the behaviour with regard to key usage
should be identical on the source and destination despite the different TPM ver-
sions.

The paper then describes the proposed solution from the viewpoint of four
different migration scenarios:

1. Migration of a single, simple, decryption or signing key.
2. Migration of a key requiring a certain state of the PCRs.
3. Migration of storage key, including child keys.

4. The scenarios above, but for CMKs.

Together these scenarios cover the different migratable key types.

The conversion is done by introducing a trusted conversion authority which
performs the conversion of the keys. An important property of the proposed so-
lution is that the introduction of this conversion authority does not lower the
security of the system. If the original key is a CMK, there is already a TTP in
control of migration (the MSA), which could potentially be extended to also sup-
port conversion. If the original key is not a CMK, the owner can already freely
migrate the key to any destination. Thus, the owner can perform the operations
of the conversion authority locally at the source or destination TPM, if a separate
conversion authority is undesirable.

Finally, the paper also describes the implementation process to test the pro-

posed migration scenarios. The conversion authority was implemented and tested
by using TPM emulators for TPM 1.2 and TPM 2.0.

3.1.3 Trust Anchors in Software Defined Networks

In Paper III we contribute to the area of security in Software Defined Networking.
The contributions from this paper can be divided into two major parts: first we
protect security assets of network elements using isolated execution environments
with a new library called TLSonSGX, and second a mechanism for secure enroll-
ment of network elements in software defined networks. Both parts use trusted
computing to achieve their respective goals, both TPM and Intel SGX. The two
parts are described in more detail below.

3.1 Contributions 45

TLSonSGX

The data plane in an SDN deployment consists of for example virtual switches that
are deployed by an orchestrator. The virtual switches are dynamically connected
to virtual instances as they are created and destroyed. Communication between
the data plane and the central SDN controller happens over the southbound API,
ideally using TLS with mutual authentication to protect the SDN deployment.

TLSonSGX allows virtual switches to use a cryptographic library that runs in-
side a TEE. By providing a wrapper around the OpenSSL API, but with selected
functions leading into an SGX enclave, the library can ensure that TLS sessions
originate and terminate within the enclave. Thus, certificates used for mutual
TLS authentication can be stored securely within the enclave, protecting the con-
fidentiality and integrity of such security assets even in case of a compromise of
the host. By providing the library as a wrapper around a subset of the OpenSSL
API, we could use the library together with Open vSwitch.

Finally, TLSonSGX was evaluated by measuring several aspects including gen-
eration time of keys and certificates, and packet round trip latency. While key gen-
eration is only performed upon launch of Open vSwitch, the packet round trip
latency affects all packages in the TLS connection. The evaluation shows that the
latency is increased compared to using OpenSSL outside the enclave, since there
is an overhead when entering and exiting the enclave for packets. However, based
on the system model of a typical SDN deployment, only the first packet of flow
will be passed to the controller, after this the switch will have learned the flow and
the latency between controller and virtual switch is irrelevant.

Secure Enrollment of Network Elements

Before enrolling network elements such as VNFs in the network infrastructure,
their integrity should be verified, since only trustworthy applications should be
able to communicate with the SDN controller. The paper proposes a solution
where the integrity of a VNF is verified by using the TPM as a root of trust. In
addition, SGX enclaves are used to ensure integrity and confidentiality of creden-
tials required for communication with the SDN controller. This provides an extra
layer of protection in case of a breach of the platform TCB.

In the proposed solution, the VNF requires credentials in form of a client
certificate to be able to connect and communicate with the SDN controller. To
acquire valid credentials, the VNF must first pass integrity checks. Integrity mea-
surements are provided by Linux IMA, which can also use a TPM to anchor the
measurements. The TPM can be used for remote attestation, and a certificate au-
thority can compare the signed quote of the platform state with a list of known
good configurations. If the quote is known to be good, the CA issues a signed
client certificate back to the VNF which can then use it to connect to the SDN
controller. The signed client certificate is stored securely in an enclave. A mali-
cious VNF would not be able to acquire such a certificate, and will not be enrolled.

46 Contributions and Conclusions

The enrollment scheme is also implemented and evaluated in terms of per-
formance, mainly with regard to time for enrollment, since every time a VNF is
launched a new attestation sequence must be performed before enrollment. Mea-
surements show that the complete attestation sequence can be performed in sig-
nificantly less than one second.

3.1.4 A Recommender System for User-Specific Vulnerability Scoring

Paper IV contributes to the area of software vulnerability assessment. The pa-
per presents a recommender system that consists of three main subsystems: a
knowledge-based, a content-based, and a domain-based. Together, the three sub-
systems can deliver recommendations based on a user’s explicit preferences, as well
as automatically learn from the user’s previous interactions with the recommender.
The domain-based subsystem is specific for the field of vulnerabilities, and allows
the provider of the recommender to configure rules that are specifically adapted to
the field of vulnerabilities.

The proposed recommender is implemented with a set of different vulnera-
bility features as data sources for the recommender. Suggested features includes
both common vulnerability metrics such as confidentiality, integrity, and avail-
ability impact from CVSS, but also includes other sources such as the availability
of Metasploit exploits, and Google hits.

While the standard CVSS score is the same for all users, the CVSS specification
also allows for the use of an environmental score [CVSS2; CVSS3]. This allows
users to manually select the importance of a set of properties which affect the
final weights of the score. Comparing our proposed recommender to the CVSS
environmental score is a relevant comparison to make, since they both allow for
user-specific vulnerability scoring.

An initial evaluation of the proposed recommender is provided in the paper,
where an offline data set is collected from a set of users working in the industry,
for different companies, and with high security awareness — potential users of such
arecommender system. After asking the users to manually rank a set of CVEs, and
state their preferences regarding aspects of vulnerabilities in general, we could eval-
uate the effectiveness of the score produced by the recommender. The evaluation
shows a higher predictive rating accuracy for most users when using the recom-
mender compared to using the environmental score.

3.1.5 Privacy-enabled Recommendations for Software Vulnerabilities

In Paper V we consider the privacy implications of a recommender such as the one
described in Paper IV. Stored user profiles, containing both implicit and explicit
user preferences, could be used by a malicious actor to gain information about
internal security policies.

The paper addresses this problem by describing a privacy-preserving mech-
anism to protect the user profiles. The solution is based on both trusted exe-

3.1 Contributions 47

cution environments together with an approach derived from k-anonymity and
differential privacy. The overall idea is to release queries to the recommender in
larger batches, where the genuine profile is sent together with statistically different
pseudo profiles, thus preventing a malicious service provider to match a user with
a profile.

The paper proposes a design utilizing a TEE, allowing the privacy-preserving
solution to be provided by either a third-party, or the service provider itself. Re-
gardless of the location, the client can verify the integrity of the intermediary to
be sure that it has not been tampered in a way that could destroy the privacy guar-
antees. This also allows the intermediary to be placed in near proximity of the
recommender system, which may reduce network delays when multiple queries
are issued.

We also describe the implementation of a prototype, implemented using In-
tel SGX, and tested it with an already existing recommender system. The pro-
posed implementation requires no modifications of the recommender system it-
self, which together with the possibility for a third-party intermediary allows for
a gradual adoption. Finally, the prototype implementation is evaluated in terms
of performance, to show the performance impact of the proposed solution. As ex-
pected, by introducing the extra pseudo-profiles, the response time is increased be-
cause the recommender needs to handle more requests. This highlights the trade-
off between privacy guarantees and response time of the recommender.

3.1.6 Not So Greedy: Enhanced Subset Exploration for Nonrandom-
ness Detectors

In Paper VI we focus on the construction of distinguishers and nonrandomness
detectors, specifically on the use of the Maximum Degree Monomial (MDM)
test. This test was introduced in [EJS07], and requires the use of a subset of IV
and/or key bits which are analysed. The selection of such subsets was considered
in [Stal0], where a greedy algorithm was proposed.

Greedy algorithms risk getting stuck in local optima, which may not be close
to the global optimum. However, performing an exhaustive search over all possible
subsets is infeasible, as recent symmetric ciphers have key and IV lengths of up to
256 bits.

Instead, we propose a new and generic algorithm to find such subsets. The
algorithm is easily tunable to the desired computational complexity, and works
on any stream cipher. It can be seen as a generalization of the greedy algorithm
proposed in [Stal0], but instead of always greedily choosing the best bit in each
iteration, our algorithm keeps track of a list of good candidates in each iteration.
This reduces the risk of the algorithm to get stuck in local optima. The algorithm
also allows to add more than one bit to the subset in each iteration, which further
decreases the risk of getting stuck in a local optima, at the expense of increased
computational complexity.

48 Contributions and Conclusions

The algorithm is evaluated by comparing several different input parameters,
both to show the possibilities of the algorithm, as well as providing an idea as of
how different parameters affect the final results. The evaluation is performed on
several different ciphers: Grain-128a, Kreyvium, and Grain-128, and consistently
provides better results compared to the naive greedy approach.

The paper is an extended version of [KHS17], where the analysis of Kreyvium
has been added, as well as more test on all ciphers such as investigating the effect
of using an optimal starting set, as well as other improvements.

3.2 Conclusions

The topic of this dissertation has been to present new results on preventive mea-
sures in the area of cyber security. The contributions have covered several fields,
including trusted computing, recommender systems, and cryptography.

The diversity of the contributions also shows that the security of a system as
a whole depends on many parts; ciphers need to be secure, only expected code
should execute, and the code that actually runs should be free from software vul-
nerabilities. While all parts are relevant for a secure system, they may also be man-
aged by different people, and realistically, the contributions of this dissertation are
aimed at different practitioners.

Contributions presented in Paper I, Paper II, and Paper III, are useful for
system designers, and providers of services in a high-availability or cloud setting.
Tools such as the recommender system for vulnerabilities presented in Paper IV,
together with the privacy-enhancing methods from Paper V, can be useful in a
more direct way to a broader range of people — they can be used directly by devel-
opers to detect vulnerabilities in their external components. In contrast, the tools
for analysing stream ciphers presented in Paper VI will realistically be used by a
limited set of researchers in cryptography.

However, for all contributions, users can indirectly or directly benefit from
the increase in security. It also shows that the responsibility for an overall secure
system is in the hands of many people — where each party is responsible for their
individual piece.

References

[ACGI5]

[Agglo]
[Ana+13]

[And]

[Arn+16]

[Asy]
[Bah+17]

[Ber+00]

[Bit]

W. Arthur, D. Challener, and K. Goldman. A Practical Guide to
TPM 2.0. Apress, 2015.

C. C. Aggarwal. Recommender Systems. Springer, 2016.

L. Anati et al. “Innovative technology for CPU based attestation
and sealing”. In: Proc. 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy. HASP ’13.
Tel-Aviv, Israel: ACM, June 2013, p. 10.

Android Open Source Project. Hardware-backed Keystore.
https://source.android.com/security/keystore/

S. Arnautov et al. “SCONE: Secure Linux Containers with Intel
SGX”. In: Proc. 12th USENIX Conference on Operating Systems
Design and Implementation. OSDI’16. Savannah, GA, USA:
USENIX, Nov. 2016, pp. 689-703.

Google. Asylo. https://asylo.dev/.

R. Bahmani et al. “Secure Multiparty Computation from SGX”.
In: Financial Cryptography and Data Security. Ed. by A. Kiayias.
Cham: Springer International Publishing, 2017, pp. 477-497.

S. Berger et al. “vIPM: Virtualizing the Trusted Platform
Module”. In: Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15. USENIX-SS’06. Vancouver, B.C.,
Canada: USENIX Association, 2006.

Microsoft. BitLocker. https://docs.microsoft.com/en-
us/windows/security/information-
protection/bitlocker/bitlocker-overview. Accessed:
2019-05-20.

https://source.android.com/security/keystore/
https://asylo.dev/
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview

50

References

[BL10]

[BPH15]

[Bra+17]

[Bur02]

[BW13]

[Cal+11]

[Can02]

[Cas+11]

[CD16]

[CEG14]

[Cha+17]

[CL10]

E. Brickell and J. Li. “Enhanced Privacy ID from Bilinear Pairing
for Hardware Authentication and Attestation”. In: 2010 I[EEE
Second International Conference on Social Computing. Aug. 2010,
pp. 768-775.

A. Baumann, M. Peinado, and G. Hunt. “Shielding Applications
from an Untrusted Cloud with Haven”. In: ACM Trans. Comput.
Syst. 33.3 (Aug. 2015), 8:1-8:26.

E Brasser et al. “Software Grand Exposure: SGX Cache Attacks
Are Practical”. In: 11th USENIX Workshop on Offensive Technologies
(WOOT 17). Vancouver, BC: USENIX Association, Aug. 2017.

R. Burke. “Hybrid Recommender Systems: Survey and
Experiments”. In: User Modeling and User-Adapted Interaction 12.4
(Nov. 2002), pp. 331-370.

R. Boivie and 2. Williams. SecureBlue++: CPU support for secure
executables. Tech. rep. RC25287. IBM, 2013.

J. A. Calandrino et al. ““You Might Also Like:” Privacy Risks of
Collaborative Filtering”. In: 2011 IEEE Symposium on Security and
Privacy. May 2011, pp. 231-246.

J. Canny. “Collaborative Filtering with Privacy via Factor
Analysis”. In: Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval. SIGIR 02. Tampere, Finland: ACM, 2002,

pp. 238-245.

J.J. Castro-Schez et al. “A highly adaptive recommender system
based on fuzzy logic for B2C e-commerce portals™. In: Expert
Systems with Applications 38.3 (2011), pp. 2441-2454.

V. Costan and S. Devadas. Intel SGX Explained. Cryptology ePrint
Archive, Report 2016/086.
https://eprint.iacr.org/2016/086. 2016.

M. Casado, N. Foster, and A. Guha. “Abstractions for
Software-defined Networks”. In: Commun. ACM 57.10 (Sept.
2014), pp. 86-95.

S. Chandra et al. “Securing Data Analytics on SGX with
Randomization”. In: Computer Security — ESORICS 2017. Cham:
Springer International Publishing, 2017, pp. 352-369.

D. Champagne and R. B. Lee. “Scalable architectural support for
trusted software”. In: HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture. Jan. 2010,
pp- 1-12.

https://eprint.iacr.org/2016/086

References

51

[CLD16]

[CVSS2]

[CVSS3]

[Dan+11]

[De 06]

[Dia+14]

[DKWO08]

[DS09]

[Dwo+06]

V. Costan, 1. Lebedev, and S. Devadas. “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation”. In: 25/
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 857-874.

P. M. Mell et al. A Complete Guide to the Common Vulnerability
Scoring System Version 2.0.
https://www.nist.gov/publications/complete-guide-
common-vulnerability-scoring-system-version-20.
2007.

First. Common Vulnerability Scoring System v3.0: Specification
Document.
https://www.first.org/cvss/specification-document.

B. Danev et al. “Enabling Secure VM-vTPM Migration in Private
Clouds”. In: Proceedings of the 27th Annual Computer Security
Applications Conference. ACSAC ’11. Orlando, Florida, USA:
ACM, 2011, pp. 187-196.

C. De Canniére. “Trivium: A Stream Cipher Construction
Inspired by Block Cipher Design Principles”. In: Information
Security: 9th International Conference, ISC 2006, Samos Island,
Greece, August 30 - September 2, 2006. Proceedings. Springer, 20006,
pp- 171-180.

Q. Diao et al. “Jointly Modeling Aspects, Ratings and Sentiments
for Movie Recommendation (JMARS)”. In: Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’14. New York, New York, USA: ACM,
2014, pp. 193-202.

V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of
Automated Techniques for Formal Software Verification”. In:
[EEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 27.7 (July 2008), pp. 1165-1178.

I. Dinur and A. Shamir. “Cube Attacks on Tweakable Black Box
Polynomials”. In: Advances in Cryptology - EUROCRYPT 2009:
28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings. Springer, 2009, pp. 278-299.

C. Dwork et al. “Calibrating Noise to Sensitivity in Private Data
Analysis”. In: Theory of Cryptography. Betlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 265-284.

https://www.nist.gov/publications/complete-guide-common-vulnerability-scoring-system-version-20
https://www.nist.gov/publications/complete-guide-common-vulnerability-scoring-system-version-20
https://www.first.org/cvss/specification-document

52

References

[EBO9]

[EJO5]

[EJS07]

[EK07]

[EL08]

[Far+18]

[Filo2]

[Fis+17]

[Gad+16]

[Gen09]

J.-E. Ekberg and S. Bugiel. “Trust in a Small Package: Minimized
MRTM Software Implementation for Mobile Secure
Environments”. In: Proceedings of the 2009 ACM Workshop on
Scalable Trusted Computing. STC’09. Chicago, Illinois, USA:
ACM, 2009, pp. 9-18.

H. Englund and T. Johansson. “A New Simple Technique to
Attack Filter Generators and Related Ciphers”. In: Selected Areas in
Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 39-53.

H. Englund, T. Johansson, and M. Sénmez Turan. “A Framework
for Chosen IV Statistical Analysis of Stream Ciphers”. In: Progress
in Cryptology — INDOCRYPT 2007: 8th International Conference
on Cryptology in India, Chennai, India, December 9-13, 2007.
Proceedings. Springer, 2007, pp. 268-281.

J.-E. Ekberg and M. Kylanpai. Mobile Trusted Module (MTM) —
an introduction. Tech. rep. NRC-TR-2007-015. Nokia Research
Center, Nov. 2007.

P. England and J. Loeser. “Para-Virtualized TPM Sharing”. In:
Trusted Computing - Challenges and Applications. Vol. 4968.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 119-132.

K. A. Farris et al. “VULCON: A System for Vulnerability
Prioritization, Mitigation, and Management”. In: ACM Trans.
Priv. Secur. 21.4 (June 2018), 16:1-16:28.

E. Filiol. “A New Statistical Testing for Symmetric Ciphers and
Hash Functions”. In: Information and Communications Security.

Springer Berlin Heidelberg, 2002, pp. 342-353.

B. Fisch et al. “IRON: Functional Encryption Using Intel SGX”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS °17. Dallas, Texas, USA: ACM,
2017, pp. 765-782.

V. N. Gadepally et al. “Recommender Systems for the
Department of Defense and the Intelligence Community”. In:
Lincoln Laboratory Journal 22.1 (2016), pp. 74—89.

C. Gentry. “Fully Homomorphic Encryption Using Ideal
Lattices”. In: Proceedings of the Forty-first Annual ACM Symposium
on Theory of Computing. STOC ’09. Bethesda, MD, USA: ACM,
2009, pp. 169-178.

References

53

[Got+17]

[Gru+17]

[Her+99]

(HJ07]

[HK15]

[Hun+18a]

[Hun+18b]

[HZC07]

[Int19]

[KG99]

[KHS17]

[Kim+10]

J. Gotzfried et al. “Cache Attacks on Intel SGX”. In: Proceedings of
the 10th European Workshop on Systems Security. EuroSec’17.
Belgrade, Serbia: ACM, 2017, 2:1-2:6.

D. Gruss et al. “Strong and Efficient Cache Side-Channel
Protection using Hardware Transactional Memory”. In: 2624
USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, Aug. 2017, pp. 217-233.

J. L. Herlocker et al. “An Algorithmic Framework for Performing
Collaborative Filtering”. In: Proceedings of the 22Nd Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR °99. Berkeley, California, USA:
ACM, 1999, pp. 230-237.

M. Hell and T. Johansson. “Cryptanalysis of Achterbahn-Version
27 In: Selected Areas in Cryptography. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 45-55.

E M. Harper and J. A. Konstan. “The MovieLens Datasets:
History and Context”. In: ACM Trans. Interact. Intell. Syst. 5.4
(Dec. 2015), 19:1-19:19.

T. Hunt et al. “Chiron: Privacy-preserving Machine Learning as a
Service”. In: CoRR abs/1803.05961 (2018). arXiv: 1803.05961.

T. Hunt et al. “Ryoan: A Distributed Sandbox for Untrusted
Computation on Secret Data”. In: ACM Trans. Comput. Syst. 35.4
(Dec. 2018), 13:1-13:32.

Z. Huang, D. Zeng, and H. Chen. “A Comparison of
Collaborative-Filtering Recommendation Algorithms for
E-commerce”. In: IEEE Intelligent Systems 22.5 (Sept. 2007),
pp- 68-78.

Intel. Intel 64 and IA-32 Architectures Software Developers Manual,
Combined Volumes: I, 2A, 2B, 2C, 2D, 34, 3B, 3C, 3D and 4.
Tech. rep. 325462-070US. Intel Inc., May 2019.

C. Kern and M. R. Greenstreet. “Formal Verification in Hardware
Design: A Survey”. In: ACM Trans. Des. Autom. Electron. Syst. 4.2
(Apr. 1999), pp. 123-193.

L. Karlsson, M. Hell, and P. Stankovski. “Improved Greedy
Nonrandomness Detectors for Stream Ciphers”. In: Proceedings of
the 3rd International Conference on Information Systems Security
and Privacy. SciTePress, 2017, pp. 225-232.

M. Kim et al. “Design and implementation of mobile trusted
module for trusted mobile computing”. In: /EEE Transactions on
Consumer Electronics 56.1 (Feb. 2010), pp. 134-140.

https://arxiv.org/abs/1803.05961

54

References

[Kim+15]

[Kle+09]

[Kor09]

[KRS13]

[Kiic+16]

[KW16]

[Lip+18]

[LM17]

[LS18]

[Lyol4]

[Mae+18]

S. Kim et al. “A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications”. In:
Proc. 14th ACM Waorkshop on Hot Topics in Networks.
HotNets-XIV. Philadelphia, PA, USA: ACM, Nov. 2015, 7:1-7:7.

G. Klein et al. “seL4: Formal Verification of an OS Kernel”. In:
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles. SOSP °09. Big Sky, Montana, USA: ACM,
2009, pp. 207-220.

Y. Koren. 7he BellKor Solution to the Netflix Grand Prize.
https://www.netflixprize.com/assets/GrandPrize2009_
BPC_BellKor.pdf. Aug. 2009.

M. Kaminskas, F. Ricci, and M. Schedl. “Location-aware Music
Recommendation Using Auto-tagging and Hybrid Matching”. In:
Proceedings of the 7th ACM Conference on Recommencder Systems.
RecSys ’13. Hong Kong, China: ACM, 2013, pp. 17-24.

K. A. Kiigiik et al. “Exploring the Use of Intel SGX for Secure
Many-Party Applications”. In: Proceedings of the Ist Workshop on
System Software for Trusted Execution. SysTEX’16. Trento, Italy:
ACM, 2016, 5:1-5:6.

U. Kanonov and A. Wool. “Secure Containers in Android: The
Samsung KNOX Case Study”. In: Proceedings of the 6th Workshop
on Security and Privacy in Smartphones and Mobile Devices. SPSM
’16. Vienna, Austria: ACM, 2016, pp. 3-12.

M. Lipp et al. “Meltdown: Reading Kernel Memory from User
Space”. In: 27th USENIX Security Symposium (USENIX Security
18). 2018.

D. Lie and P. Maniatis. “Glimmers: Resolving the Privacy/Trust
Quagmire”. In: Proceedings of the 16th Workshop on Hot Topics in
Operating Systems. HotOS °17. Whistler, BC, Canada: ACM, 2017,
pp. 94-99.

Y. Lee and S. Shin. “Toward Semantic Assessment of Vulnerability
Severity: A Text Mining Approach”. In: Ist International Workshop
on EntitY REtrieval (EYRE ’18). 2018.

K. B. Lyons. A Recommencder System in the Cyber Defense Domain.
https://scholar.afit.edu/etd/612/.2014.

P. Maene et al. “Hardware-Based Trusted Computing
Architectures for Isolation and Attestation”. In: [EEE Transactions
on Computers 67.3 (Mar. 2018), pp. 361-374.

https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://scholar.afit.edu/etd/612/

References

55

[McK+13]

[Mij+10]

[MMO09]

[Mok+17]

[MTM10]

[NCE19]

[Net]

[NS08]

[NVD]

[Ohr+16]

[OpE]

[PB07]

F. McKeen et al. “Innovative Instructions and Software Model for
Isolated Execution”. In: Proc. 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. HASP
’13. Tel-Aviv, Israel: ACM, June 2013, 10:1-10:1.

R. Mijumbi et al. “Network Function Virtualization:
State-of-the-Art and Research Challenges”. In: /EEE
Communications Surveys Tutorials 18.1 (2016), pp. 236-262.

E McSherry and I. Mironov. “Differentially Private Recommender
Systems: Building Privacy into the Netflix Prize Contenders”. In:
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’09. Paris, France:
ACM, 2009, pp. 627-636.

S. B. Mokhtar et al. “X-search: Revisiting Private Web Search
Using Intel SGX”. In: Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference. Middleware '17. Las Vegas, Nevada: ACM,
2017, pp. 198-208.

Trusted Computing Group. 7CG Mobile Trusted Module
Specification, Specification Version 1.0, Revision 7.02. Apr. 2010.

E D. Nembhard, M. M. Carvalho, and T. C. Eskridge. “Towards
the application of recommender systems to secure coding”. In:

EURASIP Journal on Information Security 2019.1 (June 2019), p. 9.

Netflix. Netflix Prize. https://www.netflixprize.com/.
(visited on: 2019-02-07).

A. Narayanan and V. Shmatikov. “Robust De-anonymization of
Large Sparse Datasets”. In: 2008 IEEE Symposium on Security and
Privacy (S&P 2008). May 2008, pp. 111-125.

NIST. National Vulnerability Database.
https://nvd.nist.gov/.

O. Ohrimenko et al. “Oblivious Multi-Party Machine Learning
on Trusted Processors”. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug.
2016, pp. 619-636.

Microsoft. Open Enclave. https://openenclave.io/. Accessed:
2019-08-28.

R. Parameswaran and D. M. Blough. “Privacy Preserving
Collaborative Filtering Using Data Obfuscation”. In: 2007 IEEE
International Conference on Granular Computing (GRC 2007).
Nov. 2007, pp. 380-380.

https://www.netflixprize.com/
https://nvd.nist.gov/
https://openenclave.io/

56

References

[PCO09]

[PDO05]

[Petl7]

[PG16]

[Pir+18]

[Pol+17]

[PVCI8]

[PW03]

[RFC8440]

[Ric+11]
[RSA78]

M. Piotte and M. Chabbert. 7he Pragmatic Theory solution to the
Netflix Grand Prize. https://www.netflixprize.com/
assets/GrandPrize2009_BPC_PragmaticTheory.pdf. Aug.
2009.

H. Polat and W. Du. “SVD-based Collaborative Filtering with
Privacy”. In: Proceedings of the 2005 ACM Symposium on Applied
Computing. SAC’05. Santa Fe, New Mexico: ACM, 2005,

pp. 791-795.

T. Peters. A Survey of Trustworthy Computing on Mobile ¢ Wearable
Systems. Tech. rep. 2017-823. Dartmouth Computer Science, May
2017.

N. Paladi and C. Gehrmann. “TruSDN: Bootstrapping Trust in
Cloud Network Infrastructure”. In: Proc. 12th International
Conference on Security and Privacy in Communication Networks.
SecureComm’16. Guangzhou, China: Springer, Oct. 2016,

pp- 104-124.

R. Pires et al. “CYCLOSA: Decentralizing Private Web Search
through SGX-Based Browser Extensions”. In: 2018 IEEE 38th

International Conference on Distributed Computing Systems
(ICDCS). July 2018, pp. 467—477.

N. Polatidis et al. “Recommender Systems Meeting Security: From
Product Recommendation to Cyber-Attack Prediction”. In:
Engineering Applications of Neural Networks. Ed. by G. Boracchi

et al. Cham: Springer International Publishing, 2017, pp. 508-519.

C. Priebe, K. Vaswani, and M. Costa. “EnclaveDB: A Secure
Database Using SGX”. In: 2018 IEEE Symposium on Security and
Privacy (SP). May 2018, pp. 264-278.

H. Polat and Wenliang Du. “Privacy-preserving collaborative
filtering using randomized perturbation techniques”. In: 7hird
IEEE International Conference on Data Mining. Nov. 2003,
pp. 625-628.

E. Rescotla. 7he Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. RFC Editor, Aug. 2018.

E Ricci et al. Recommencder Systems Handbook. Springer, 2011.

R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems”. In:
Communications of the ACM 21.2 (Feb. 1978), pp. 120-126.

https://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf
https://www.netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf

References

57

[Saal6]

[SamO01]

[Sar+01]

[Sch+15]

[Sch+17]

[SH15]

[Shi+16]

[Smal6]
[SS§98]

[SSWO08]

[Stal0]

M.-]. O. Saarinen. Chosen-1V Statistical Attacks on eSTREAM
Stream Ciphers. <SSTREAM, ECRYPT Stream Cipher Project,
Report 2006/013. http:
//www.ecrypt.eu.org/stream/papersdir/2006/013. pdf.
2006.

P. Samarati. “Protecting respondents identities in microdata
release”. In: IEEE Transactions on Knowledge and Data Engineering
13.6 (Nov. 2001), pp. 1010-1027.

B. Sarwar et al. “Item-based Collaborative Filtering
Recommendation Algorithms”. In: Proceedings of the 10th
International Conference on World Wide Web. WW'W *01. Hong
Kong, Hong Kong: ACM, 2001, pp. 285-295.

E Schuster et al. “VC3: Trustworthy Data Analytics in the Cloud
Using SGX”. In: 2015 IEEE Symposium on Security and Privacy.
May 2015, pp. 38-54.

M. Schwarz et al. “Malware Guard Extension: Using SGX to
Conceal Cache Attacks”. In: Detection of Intrusions and Malware,
and Vulnerability Assessment. Cham: Springer International
Publishing, 2017, pp. 3-24.

M. Schedl and D. Hauger. “Tailoring Music Recommendations to
Users by Considering Diversity, Mainstreaminess, and Novelty”.
In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’15.
Santiago, Chile: ACM, 2015, pp. 947-950.

M.-W. Shih et al. “S-NFV: Securing NFV States by Using SGX”.
In: Proc. 2016 ACM International Workshop on Security in Software
Defined Networks ¢ Network Function Virtualization. SDN-NFV
Security "16. New Orleans, Louisiana, USA: ACM, Mar. 2016,
pp. 45-48.

N. P. Smart. Cryprography Made Simple. Springer, 2016.

P. Samarati and L. Sweeney. “Generalizing Data to Provide
Anonymity when Disclosing Information (Abstract)”. In:
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. PODS *98. Seattle,
Washington, USA: ACM, 1998, pp. 188—.

A.-R. Sadeghi, C. Stiible, and M. Winandy. “Property-Based TPM
Virtualization”. In: Information Security. Vol. 5222. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2008, pp. 1-16.

P. Stankovski. “Greedy distinguishers and nonrandomness
detectors”. In: INDOCRYPT 2010. Springer, 2010, pp. 210-226.

http://www.ecrypt.eu.org/stream/papersdir/2006/013.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/013.pdf

58

References

[SWG19]

[Tak+08]

[T]19]

[TPMI1]

[TPM12]

[TPM20c]

[TXT]

[Van+18]

[Vas+12]

[Vie07]

[Wan+12]

[Wan+17]

M. Schwarz, S. Weiser, and D. Gruss. “Practical Enclave Malware
with Intel SGX”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Cham: Springer International Publishing,
2019, pp. 177-196.

G. Takécs et al. “Matrix Factorization and Neighbor Based
Algorithms for the Netflix Prize Problem”. In: Proceedings of the
2008 ACM Conference on Recommender Systems. RecSys *08.
Lausanne, Switzerland: ACM, 2008, pp. 267-274.

A. Toscher and M. Jahrer. 7he BigChaos Solution to the Netflix
Grand Prize. https://www.netflixprize.com/assets/
GrandPrize2009_BPC_BigChaos.pdf. Sept. 2019.

Trusted Computing Group. Trusted Computing Platform Alliance
(TCPA) Main Specification Version 1.1b. Feb. 2002.

Trusted Computing Group. TPM Main, Part 1-3, Specification 1.2,
Revision 116. Mar. 2011.

Trusted Computing Group. Trusted Platform Module Library, Part
14, Family 2.0, Level 00 Revision 01.38. Sept. 2016.

Intel. Intel Trusted Execution Technology (Intel TXT) Software
Development Guide. Tech. rep. 315168-015. Intel Corporation,
Nov. 2017.

J. Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In:
Proceedings of the 27th USENIX Security Symposium. USENIX
Association, Aug. 2018.

A. Vasudevan et al. “Trustworthy Execution on Mobile Devices:
What Security Properties Can My Mobile Platform Give Me?” In:
Trust and Trustworthy Computing. Springer Berlin Heidelberg,
2012, pp. 159-178.

M. Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV
Differential Attack. Cryptology ePrint Archive, Report 2007/413.
http://eprint.iacr.org/2007/413.2007.

X. Wan et al. “An improved vI'PM migration protocol based
trusted channel”. In: 2012 International Conference on Systems and
Informatics (ICSAI2012). May 2012, pp. 870-875.

W. Wang et al. “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. Dallas, Texas, USA: ACM,
2017, pp. 2421-2434.

https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://eprint.iacr.org/2007/413

References

59

[Wan+18]

[Win08]

[Yao82]

[YLL19]

[Zha+10]

[Zhe+09]

[Zho+08]

[Z716]

D. Wang et al. “A content-based recommender system for
computer science publications”. In: Knowledge-Based Systems 157
(2018), pp. 1-9.

J. Winter. “Trusted Computing Building Blocks for Embedded
Linux-based ARM Trustzone Platforms”. In: Proceedings of the 3rd
ACM Workshop on Scalable Trusted Computing. STC08.
Alexandria, Virginia, USA: ACM, 2008, pp. 21-30.

A. C. Yao. “Protocols for secure computations”. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). Nov.
1982, pp. 160-164.

J. Yang, M. Liu, and D. Lin. “Cube Cryptanalysis of
Round-Reduced ACORN. In: Information Security. Cham:
Springer International Publishing, 2019, pp. 44—64.

J. Zhan et al. “Privacy-Preserving Collaborative Recommender
Systems”. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 40.4 (July 2010), pp. 472—476.

Z. Zheng et al. “WSRec: A Collaborative Filtering Based Web
Service Recommender System”. In: 2009 IEEE International
Conference on Web Services. July 2009, pp. 437-444.

Y. Zhou et al. “Large-Scale Parallel Collaborative Filtering for the
Netflix Prize”. In: Algorithmic Aspects in Information and
Management. Springer Berlin Heidelberg, 2008, pp. 337-348.

E Zhang and H. Zhang. “SoK: A Study of Using
Hardware-assisted Isolated Execution Environments for Security”.
In: Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016. HASP 2016. Seoul, Republic of Korea:
ACM, 2016, 3:1-3:8.

Included Publications

Using TPM Secure Storage In
Trusted High Availability
Systems

Abstract

We consider the problem of providing trusted computing functionality in high
availability systems. We consider the case where data is required to be encrypted
with a TPM protected key. For redundancy, and to facilitate high availability, the
same TPM key is stored in multiple computational units, each one ready to take
over if the main unit breaks down. This requires the TPM key to be migratable.
We show how such systems can be realized using the secure storage of the TPM.
Hundreds of millions TPM 1.2 chips have been shipped but with the recent intro-
duction of TPM 2.0, more manufacturers are expected to start shipping this newer
TPM. Thus, a migration from TPM 1.2 to TPM 2.0 will likely be seen in the next
few years. To address this issue, we also provide an API that allows a smooth up-
grade from TPM 1.2 to TPM 2.0 without having to redesign the communication
protocol involving the different entities. The API has been implemented for both
TPM 1.2 and TPM 2.0.

1 Introduction

A High Availability System, hereafter referred to as HAS, can be used for mission

critical systems like medical, trading, banking, mobile network infrastructure, and

Martin Hell, Linus Karlsson, Ben Smeets, and Jelena Mirosavljevic. “Using TPM Secure Storage
in Trusted High Availability Systems”. In The 6th International Conference on Trusted Systems,
INTRUST 2014, Beijing, China. LNCS Vol. 9473, pp. 243-258, Springer.

64 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

blue-light systems. Such systems often run for many years and sometimes longer
than a decade. As part of high availability requirements, often such systems need
trusted platform functions that guarantee that only authentic and approved system
software and applications can run on them. Also, one frequently sees demands
to safely store sensitive data and keys used by applications and management func-
tions. In the types of HAS that we consider there are multiple Computational
Units (CUs) that are organized so they can take over each others’ tasks in the event
a CU fails. To provide for trusted platform functions like authenticated boot and
storage of sensitive data and keys, each CU is equipped with a TCG Trusted Plat-
form Module (TPM). Typically, a CU is a PCB or rack mountable unit that can
be inserted in a cabinet that hosts the HAS, and can accommodate a multitude
of CUs. The use of multiple TPM:s for protection in a HAS has many technical
problems due to the migration problems that the use of TPM introduces.

At the same time, there are different versions of the TPM, which in some
aspects are very different from each other. TPM 1.2 was introduced in 2003 and
since 2006 a TPM chip has been included in many laptops. In 2012, TPM 2.0
was introduced, adding new functionality and with no backwards compatibility
with TPM 1.2. Even though PCBs still come equipped with a TPM 1.2 chip,
within a few years TPM 2.0 is likely to be the dominant chip on newer boards.
This provides a challenge as systems utilizing trusted computing functionality may
have to undergo significant, and costly, changes.

In this paper, we focus on Trusted Computing Technology, and how a CU
manufacturer can offer a solution where customers have unique keys, only usable
in a specific HAS, but which still utilizes generic CUs to be used as replacement
boards. Moreover, we provide a general API that is independent of the TPM
version used. This allows for a cost-efficient deployment of the system as it can be
easily updated when TPM 2.0 gains widespread adoption.

The paper is organized as follows. Section 2 gives a brief overview of TPMs,
describing some functionality relevant to the paper. In Section 3, we specify the
use cases together with the threat model. In Section 4 we describe the requirements
that must be met by the proposed solution, which is then described in Section 5.
A security analysis of the proposed solution is described in Section 6. Section 7
describes the general API. Finally we discuss some related work in Section 8. Sec-
tion 9 concludes the paper.

2 Overview of TPM 1.2 and TPM 2.0

TPMs have been around for more than a decade and most laptops ship with a
TPM. Still, we have seen very few applications taking advantage of the functional-
ity provided by TPMs. Microsoft’s Bitlocker encryption system is the most known
and widely used. A TPM enables trusted computing functionality such as authen-
ticated boot, remote attestation and sealed storage. This section will give a short
introduction to TPM 1.2 and 2.0, highlighting the differences when duplicating

2 Overview of TPM 1.2 and TPM 2.0 65

keys to new destinations. For a more detailed treatment we refer to the specifica-

tions [TPM12; TPM20a].

2.1 Overview of TPM 1.2 and Certifiable Migration Keys

A'TPM 1.2 provides a key hierarchy of asymmetric keys, where the private part of
a child key is protected (encrypted) using the public key of the parent. Parents are
of type storage key and are used to encrypt other keys, while leafs in the tree can be
of any type, e.g., a signing key, encryption key or attestation identity key (AIK).
Asymmetric keys in TPM 1.2 consist of two parts: one public part, and one pri-
vate part. The public part contains data such as the public key and different flags.
The private part is encrypted, and contains the private key, but also usage and mi-
gration secrets. The root of the key hierarchy is the Storage Root Key (SRK),
which is created when someone takes ownership of the TPM. The TPM owner
authenticates using an owner secret and several commands require owner autho-
rization, e.g., commands used in migration which is the main topic of this paper.
Commands that use the private part of a key are authenticated using a usage secret
which can be unique to each key. Such commands are e.g., creation of new keys,
data signing and data decryption.

The only way to have the same key protected by two TPMs is to use migrat-
able keys. Migratable keys were introduced in TPM 1.1, offering the ability to mi-
grate (or actually duplicate) a TPM protected key to another TPM. There are two
variants of migration schemes specified, called rewrap and migrate. In the rewrap
case, the private part of the migratable key is simply decrypted and re-encrypted
using the destination key. In the migrate scheme, the key is instead re-encrypted
using the public key of a migration authority (MA). The MA can then re-encrypt
the private part with the destination public key. We will not consider the scheme
using a migration authority any further in this paper.

Each key also has a migration secret in addition to the usage secret. Migration
is only allowed if the migration secret is known. For non-migratable keys, the
migration secret is tpmproof, a value internal to the TPM and never exposed. Also,
the source TPM-owner must approve the destination, however, for any migratable
key, the owner can choose any destination. Thus, if the TPM owner is not trusted,
the key can end up in any TPM, or even outside a TPM if the owner migrates the
key to his own keypair generated by e.g., OpenSSL.

A Certifiable Migration Key (CMK), introduced in TPM 1.2, allows for a
trusted entity, called Migration Selection Authority (MSA), to be in control of
destinations for each individual CMK. The MSA control is tied to each CMK
by binding the CMK key to a list of MSAs at key creation time (called MSAList).
Similar to migratable keys, there are two possible migration schemes for CMKs,
restrict_migrate and restrict_approve. In restrict_approve, tickets which include
both the CMK and the destination public key, are used to control the destination.
Tickets are signed by the MSA and only the destination in the ticket can be used

66 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

as target for migration. Then the ticket is first used to create a CMK blob encrypted
with the destination SRK. Then the ticket is used again in the target TPM to
convert the blob into a key in the key hierarchy. The tickets signed by the MSA
are called restrictTickets. From these tickets, sigTickets are produced by letting
the TPM owner approve the information in the restrictTicket. Thus, both the
MSA and the TPM owner control the migration of a CMK. In the following,
restrictTickets will sometimes simply be denoted “ticket” since this is the ticket
that will be communicated between entities.

In the restrict_migrate scheme, the CMK is migrated directly to an MSA. No
ticket is needed in this case since the key already is bound to the MSA at creation
time so the MSA is trusted as destination.

Different from a migratable key, a CMK can be certified by an AIK. The certi-
fication states that the CMK key belongs to a TPM and that the private part of the
key will never leave the TPM in unencrypted form (assuming the MSA enforces
this). Certification of CMKs is not used in this paper and will not be considered
further.

2.2 Limitations of CMKs

The TPM owner controls migratable keys in the sense that he/she can create them
outside of the TPM or migrate them out from the TPM. Thus, there is no guar-
antee that the private key is TPM protected. While this problem is addressed by
CMKs, putting an MSA in control, the CMKs have some important limitations.

* A software MSA can create CMK keys outside the TPM and migrate them
into a TPM.

* When the restricc_migrate scheme is used, a software MSA can read the
private CMK key.

* Each time a CMK is migrated, both out of a TPM and into a new TPM,
a signed ticket from an MSA is required. Thus, from the perspective of the
two TPMs, there must be communication with a third party. If tickets are
created in advance this is not required, but then the destinations must be
known in advance.

The last limitation above significantly restricts the use of CMKs in HAS’s,
because the destination CU (e.g. a replacement unit) is not known in advance. It
is therefore important to find secure ways to combat this problem. This is one of
the main goals in our proposed design.

2.3 Overview of TPM 2.0 and Duplication

The key hierarchy in TPM 1.2 has been replaced by an object hierarchy in TPM
2.0. Objects in the hierarchy can be both symmetric and asymmetric keys, but

2 Overview of TPM 1.2 and TPM 2.0 67

also data blobs. The type is determined by a combination of the binary properties
sign, decrypt and restricted, where the last property means that the object (key) can
only perform actions on data prepared by the TPM itself. This is controlled by
including a specific byte sequence in these objects. Some commands can only be
performed in objects with this byte sequence. Storage keys are asymmetric keys
with the properties restricted and decrypt. Similar to TPM 1.2, these keys protect
child keys in the hierarchy. However, the protection in TPM 2.0 is by symmetric
encryption. A storage key has a unique seed in its private part, which is used to
derive a symmetric encryption/decryption key. This key is derived from the seed
each time a new object is created or loaded into the TPM.

In TPM 2.0 the term migration has been replaced by duplication, as it more
accurately reflects the reality. Two important object attributes are used to control
duplication of a key. The first, fixedTPM, controls if an object can be duplicated
atall. Ifan object has this attribute set, the object can not be duplicated. Naturally,
an object with fixed TPM set can not be below an object with fixedTPM clear
in the hierarchy. The second, fixedParent, controls if an object can be explicitly
duplicated (when fixedParent is clear) or if it must be implicitly duplicated (when
fixedParent is set) by duplicating a parent key, which has fixedParent clear.

The notion of CMKs and migration schemes has been completely removed
in TPM 2.0, and has been replaced by policies. A policy is a general concept that
controls the actions that can be performed on an object in the hierarchy. Policies
are set upon object creation time by storing a value, called authPolicy, in the public
part of an object. The authPolicy is a hash value created by running several policy
commands, where each command extends the authPolicy digest. This is similar to
how PCR values are built by using TPM_Extend. The authPolicy can be based on
e.g., time limitations on usage of the object, specific commands that are possible
to execute with an object and specific parameters that can be used in a command.
Before executing a command a policyDigest must be built in a policy session.
This session also stores specific context values that are checked upon execution,
e.g., the command code if a certain command must be executed or the fact that a
certain authorization method should be used. The final policyDigest is compared
to the object’s authPolicy and if they match, the command is executed using the
information in the context values. Policies can be combined using logical AND
and OR.

The use of policies is in general optional as it is possible to authorize using
HMAG, similar to authorization in TPM 1.2, or by directly providing a password.
However, for duplication the use of policies is mandatory. Policy commands that
are particularly interesting for key duplication are TPM2_PolicyAuthorize and
TPM2_PolicyDuplicationSelect.

The TPM2_PolicyAuthorize command allows a policy to change by letting an
authority sign the new policy. This is done as follows. The TPM user generates a
new policy to use for an object. This policy, and the properties it represents, are
evaluated by an authority. If they are acceptable, the authority signs this policy

68 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

and returns the signature. The signature is verified using TPM2_VerifySignature
which returns a ticket showing that the signature is valid. This ticket, together
with the approved policy, is then used in the TPM2_PolicyAuthorize command.
Upon executing this command with a valid ticket, the policyDigest is updated by
replacing it by the hash of the name of the signature key. This hash is then the
new PolicyDigest. Thus, any policy that needs to change during the lifetime of
an object needs to include the TPM2_PolicyAuthorize command after all policies
that are subject to change. Policies added after this command has been executed
can not be changed.

The TPM2_PolicyDuplicationSelect command is used to control the destina-
tion for a duplication. The command includes both the name of the object to be
duplicated and the name of the destination. The policyDigest is updated using
both these names. Thus, the policy ties the object to a specific destination (or
several if logic OR is used). Since the destination is typically not known when
an object is created, this is typically used together with TPM2_PolicyAuthorize.
This will allow an authority to verify that the destination is valid and then sign the
resulting policyDigest.

2.4 Platform Configuration Registers

All TPMs, both of version 1.2 and 2.0, have a number of Platform Configuration
Registers (PCRs). These registers store a hash value, which is built-up by repeatedly
calling TPM_Extend or TPM2_Extend. This creates a cumulative hash, since an
extend operation depends on both a new value and the previous PCR value. The
PCRs are used to store measurements of the hardware configuration and software.
The measured values are stored in the Stored Measurement Log (SML), outside
the TPM, while the digest are secured by the TPM.

The SML can be read to ensure that the measurement values of the system are
as expected, and the integrity of the SML can be verified by comparing them to
the PCRs. In addition, keys in the TPM can be bound to certain PCR values, such
that keys can only be used when the PCRs have the correct value, thus ensuring
that keys are only used in a trusted hardware and software setting.

3 Scenario and Threat Model

The considered use case aims at building a robust infrastructure, taking the HAS
life cycle into consideration. The scenarios includes four entities.

The hardware, i.e., the computational units (CUs), are produced by a CU
manufacturer. The CU boards will include a TPM but it will not be associated
with any particular, or identified, customer or end user.

A HAS is assembled by a HAS manufacturer. The HAS manufacturer takes
two or more CUs, due to the redundancy requirements, from the CU manufac-

4 Requirements 69

turer and assembles the HAS, also using equipment from other sources. This ad-
ditional equipment is outside the scope of this work.

Customers are purchasing a HAS on which they want to store sensitive data.
This data can e.g., be keys or sensitive application data of applications running on
the HAS. The sensitive data is stored in secure storage, meaning that it resides on a
hard disk in encrypted form, protected by a TPM.

A Trusted Third Party (TTP) is used to enable the secure migration of keys
between TPMs. This is the MSA in TPM 1.2 and authority in TPM 2.0. We
assume that this party keeps all keys secure, possibly, but not necessarily, with a

TPM.

3.1 Threat Model

Any attacker that controls the hardware, will also be able to circumvent the pro-
tection offered by trusted computing, as the root of trust is potentially compro-
mised. Thus, to this end it is natural to consider the CU manufacturer trusted
and it can theoretically be merged with the TTP. It is also from the CU manufac-
turer’s perspective we mainly treat the problem. Still, mounting an attack against
the hardware is different from attacking the software controlling the migration on
the TTP. We will therefore consider them as separate entities.

In practice, many service and operating personnel, hereafter collectively named
company employees, will have access to the HAS during its lifetime. Not all com-
pany employees can be considered trusted, and this is the main reason to protect
data using a TPM, as the decryption key will never leave the TPM unencrypted.
Not trusting company employees will also help the customer to protect against
other, potentially malicious, customers’” personnel.

T1. Anyone, including customer employees, can copy data and software from
drives in the HAS cabinet. They may also interact with the TPM.

T2. CU boards can be stolen, both spare boards and those already mounted in
a cabinet. Boards from customer A can be used in the HAS of customer B.

T3. HAS manufacturer employees can access data in the HAS when it is being
assembled, in particular data that is associated with the TPM.

The main goal is to protect stolen (encrypted) HAS data from being accessed
in cleartext, while at the same time provide a system with very low downtime.

4 Requirements

Based on the scenario and threat model, we define the following requirements.

70 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

R1. Data confidentiality. Data stored on secondary memory, e.g., hard drives
or memory cards, must always be encrypted. The key may never be stored
(unencrypted) on secondary memory.

R2. Redundancy. The data on a HAS must at all times be accessible, even in
the case of hardware failure.

R3. Scalability. After completed assembly by the HAS manufacturer, spare CUs
can be ordered by the customer directly from the CU manufacturer. These
are generic and not personalised for the specific customer. Thus, we assume
that anyone will be able to buy a generic CU.

R4. Customer lockdown. Only TPMs initiated by the CU factory can be used
as replacement boards. This will allow the CU factory to create boards that
are specific for a group of customers, still allowing customers to have unique

keys.

R5. TPM Compatibility. The API used by the different entities must be com-
patible with both TPM 1.2 and TPM 2.0.

R6. Customer control. The customer should be the owner of the TPM, allow-
ing him to use it for other purposes such as remote attestation and key cer-
tification. This also allows the customer to reuse the hardware and TPMs
in the event of a CU manufacturer going out of business.

R7. User friendliness. Replacing CUs in the HAS should be as easy as possi-
ble for the customer. This includes minimizing the online communication
with other entities, possibly providing a completely offline solution. It also
includes minimizing the HAS interaction needed by customer employees.

We return to these requirements in Section 6 when evaluating the security of
the proposed solution.

For the sake of simplifying our expositions we assume further that the HAS
uses only two CUs. Thus, the key protecting the sensitive data must be identical
in both TPMs so that the backup CU can immediately become active in case the
first CU fails. Further, when a CU breaks it should be replaced by a spare CU
from the CU manufacturer.

5 Proposed System Design

Due to the redundancy requirement (R2), one key must be associated with several
TPMs. This can only be done using duplicable (migratable in TPM 1.2) keys. We
first analyze how this can be achieved in TPM 1.2. Consider the most straightfor-
ward solution of having a plain migratable key immediately below the SRK in the
hierarchy. To migrate this key to a new SRK, the TPM owner can simply rewrap
this key with the new SRK and import it to the new TPM.

5 Proposed System Design 71

TPM_AuthorizeMigrationKey //Owner authorized
TPM_CreateMigrationBlob //0n source TPM
TPM_ConvertMigrationBlob //0n destination TPM

The main problem with this is that the owner can rewrap the key with any key,
even one created outside the TPM. Thus, if the customer is the owner (R6) the
private part of the key is not guaranteed to be protected by the TPM at all times
(T1).

With CMK keys in TPM 1.2 and policies in TPM 2.0, the migration/duplica-
tion can be controlled by a trusted authority, even when the customer is the TPM
owner. The migration of a key then proceeds as follows.

TPM_CMK_ApproveMA //0n source TPM, owner authorized
TPM_CMK_CreateKey //0n source TPM
TPM_AuthorizeMigrationKey //0n source TPM, owner authorized
TPM_CMK_CreateTicket //0n source TPM, owner authorized
TPM_CMK_CreateBlob //0n source TPM

TPM_CMK_CreateTicket //0n destination TPM, owner authorized
TPM_CMK_ConvertMigration //0n destination TPM

"The TPM_CMK_ApproveMA command lets the owner bind an MSA to the CMK.
The ticket is signed by the MSA and the key can only be migrated to a destination
given in the ticket. From this it is clear that the customer can not be owner at the
time the key is first created since he could assign any key to be an MSA public key.

An important observation is that a TPM key, we call it K, (e for encryption),
can be used on several TPMs provided that the parent key K, is the same on all
TPMs. The key blob is stored on (secondary) memory and loaded into the TPM
when needed. Upon loading a key, it is decrypted by the parent key. Thus, if the
parent key is K, it can be loaded into any TPM that has K, in the key hierarchy.
In order to have K, in several TPM key hierarchies, it must be migratable and
any key having a migratable key as parent key must also be migratable. Moreover,
a CMK (which is migratable) may not have a migratable key as parent. Figure 1
summarizes these restrictions.

[SRK]| | SRK] |SRK] SRK

(Mig] [Mig| [cmk] [cmK]

! !

Allowed Not allowed Allowed Not allowed

Figure 1: Key hierarchy restrictions for migratable keys. Both the TPM_CMK_CreateKey and
the TPM_CMK_ConvertMigration commands verify that the parent key is not mi-
gratable.

Thus, if we wish to be able to use K, in several TPMs without having to
migrate it, this key must be migratable, but not a CMK. The parent key K, can

72 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

be either a plain migratable key or a CMK. Since K, must be explicitly migrated
between TPM to facilitate the use of K, we make use of a trusted third party that
can control this migration. On a very high level, the proposed solution is given in
Fig. 2 and can be summarized as follows.

CU factory TTP HAS factory Customer

1: generate K,
2: SRK, cert(SRK)

| 3: place K, under SRK 3
| 4 K, !

Figure 2: Overview of the proposed system

1. The TTP generates the CMK key K, to be included in all new TPMs.

2. The CU manufacturer takes ownership of a new TPM and asks the TTP for
K, to be migrated under the new SRK.

3. The TTP migrates the key to the given SRK.

4. The TTP sends migrated key, encrypted with the SRK public key, to the
CU factory.

5. The CU factory loads the key into the CU.

At this point, a generic board has been prepared with a unique SRK, and
the K, which is common for all boards created by the same CU. The boards
are now prepared to be shipped either to a HAS factory for HAS assembly, or
to a customer as replacement for a broken board. Assume it has been sent to a
HAS factory. The next step is then to generate the customer specific key K. We
consider three different alternatives for generating K., namely a TTP generated
K., a HAS generated K., and a customer generated K.

Since the boards are generic, we must take two important aspects into account.
First, since K is a migratable key in TPM 1.2, we must ensure that it can not be
migrated further by a malicious customer employee (knowing the owner secret).

5 Proposed System Design 73

This can be controlled by not disclosing the migration secret to untrusted users,
i.e., simply to destroy it after key generation. In TPM 2.0 this can be controlled
more easily by using the fixedParent attribute. Second, we must also ensure that
K. is bound to the HAS, so it can not be used by other customers. This can be
done by restricting the use of the key to a given PCR setting. In TPM 1.2, the
PCR settings can be directly specified in the key structure, while in TPM 2.0 this
is achieved using policies.

5.1 TTP Generated K,
If the K, is generated by the TTD, the customer needs to send the PCR values

which the new key should be bound to. Note that this requires online communi-
cation between the two entities. The new key will only be loadable under K, and
only usable on a HAS with the correct PCR values. The steps can be described as
in Figure 3.

TTP HAS factory Customer
read PCRs
PCRs
create key K.
load K,

Figure 3: TTP generated K.

5.2 HAS Manufacturer Generated K,

If the HAS manufacturer generates K, it can be generated upon HAS assembly.
The customer specific key is created on one CU, and then the blob is copied and
loaded on the other CU as well. See Figure 4 for the executed steps.
TTP HAS factory Customer
read PCRs

create key

load key

Figure 4: HAS factory generated K.

5.3 Customer Generated K,

The customer can execute the same steps as the HAS manufacturer in the section
above to generate K. There is no difference in commands as the hardware is as-

74 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

sembled in the same way as when it left the HAS manufacturer. Figure 5 describes
the commands.

TTP HAS factory Customer
read PCRs

create key

load key

Figure 5: Customer generated K.

5.4 HAS Initialization

Before leaving the HAS factory, and before creating the customer-specific keys,
the HAS must personalize the HAS in such a way that the PCR values are unique
to every customer. This ensures that customer-specific keys can be created.

When the HAS arrives to the customer, the customer must verify that the
PCR values after system startup are indeed unique to the customer. This can be
done by verifying that the Stored Measurements Log (SML) includes a hash that
is customer dependent. If the HAS passes this test, it is ready to be used, knowing
that K, can only be decrypted by this HAS.

6 Security Analysis and Comparison of Properties for K,

Generation

We assume that any data that resides on secondary storage on the HAS can be
stolen by a malicious employee (T1). This includes the encrypted sensitive data,
the encrypted sensitive part of a TPM protected key, and key usage secrets that are
needed to use a key. While it could be possible to restrict the usage secret to only a
small number of trusted employees, thus keeping it confidential, or to distribute it
using secret sharing, we do not make such assumptions in this work. Since K, can
only be used on a customer specific HAS, the encrypted sensitive part of K, can
only be decrypted on this HAS. Thus, it is not possible to steal the encrypted data
and the encrypted K, and decrypt the data using a generic board. The sensitive
data is in clear only in primary memory, when used by the HAS software.

Since the boards are generic, a stolen board will not give an attacker any addi-
tional information compared to using their own boards. This mitigates threat T2.

Threat T3 can be mitigated to different extent depending on which K, gen-
eration alternative is used and which TPM version is used. When using a TTP for
K, generation or when K, is generated by the customer, the HAS manufacturer
employees will have no access to K, or any information about it. If K, is gener-
ated by the HAS manufacturer, for TPM 1.2, the security depends on the migra-
tion secret being destroyed after the key is generated. Otherwise, this key could be

7 Unified API 75

leaked to a malicious customer which is able to migrate K, outside the TPM. In
TPM 2.0, K. is created with fixedParent set, which can be verified by the customer
when the HAS is being initialized. Thus, it is only for HAS manufacturer created
keys in TPM 1.2 that we are not able to fully mitigate T3, but it can be noted that
an attack require cooperation between HAS manufacturer and customer employ-
ees. Returning to T1, we can also note that for customer created K, in TPM 1.2,
we must ensure that the migration secret is destroyed. Thus, for TPM 1.2, higher
security is achieved when K is generated by a trusted third party. A summary of
the different properties for different cases are given in Table 1.

We note that there are three parts required to gain access to the secure infor-
mation stored in the HAS: the encrypted data, the customer-specific key K., and
the HAS itself. Thus, we cannot protect against cases where an attacker gets hold
of all three of these parts. This includes a potential case where a malicious HAS
employee cooperates with an malicious company employee at company A. If they
have access to both stolen encrypted data, and the stolen K, from another com-
pany B, the HAS manufacturer and employee at A may cooperate to build a HAS
with the same customer-specific PCR values as customer B, thus enabling them to
decrypt the stolen data.

Finally, we also note that our analysis relies on the assumption that the TTP
is trusted and available.

Table 1: A summary of the properties when different entities generate the key K.

TTP HAS man. Customer
1.2 2.0 1.2 2.0 1.2 2.0
N'o online corr'lmunication 0 0 = = = =
with other entity needed.
Possible to verify that K is = = 0 = 0 =

bound to K.

7 Unified API

We have developed a unified API for the proposed functionality, such that a move
from TPM 1.2 to TPM 2.0 will be as simple as possible. By looking at the different
phases of our solution, we can construct sequences of TPM commands for each
of the two TPM versions, such that we get the same behaviour, abstracting away
the differences between the TPM versions.

The API has been implemented and tested to ensure the correctness of the
given commands, both for TPM 1.2 and TPM 2.0. To do this, two different TPM

76 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

simulators and support libraries have been used, one for each TPM version.

ForTPM 1.2, IBM’s Software TPM version 4720 [IBMa] has been used, which
also includes 1ibtpm, which can be used to interface with the simulator. For TPM
2.0, Microsoft’s TPM2 Simulator version 1.1 [Micb] has been used, together with
Microsoft’s TPM Software Stack version 1.1 [Mica].

7.1 Generation and Migration of K,

The first step in Figure 2 is to generate K),. The following steps are executed on
the TTP:

TPM 1.2 TPM 2.0
TPM_CMK_ApproveMA TPM2_PolicyAuthorize
TPM_CMK_CreateKey TPM2_Create

In step 2, the CU factory sends the SRK to the TTE which then in step 3
executes the following commands to create a blob which is decryptable under the

given CU’s SRK.

TPM2_LoadExternal
TPM2_PolicyDuplicationSelect
TPM2_PolicyAuthorize
TPM2_Duplicate

TPM_AuthorizeMigrationKey
TPM_CMK_CreateTicket
TPM_CMK_CreateBlob

In step 4, the blob is sent to the CU factory, which then loads the blob into
the TPM under the SRK (step 5):

TPM_CMK_CreateTicket
TPM_CMK_ConvertMigration
TPM_LoadKey?2

The CU now has K, loaded directly beneath the SRK, and the customer-
specific key K can be generated.

TPM2_Import
TPM2_Load

7.2 Generation of K,

The customer-specific key K, can be generated using any of the alternatives given
in Section 5.1, 5.2, and 5.3. The commands for each of the three cases are given
below:

7 Unified API

77

TTP Generated K,
TPM 1.2

TPM_PcrRead

// send PCRs TTP
TPM_CreateWrapKey // TTP

// send blob to customer
TPM_LoadKey2 // customer CU1
TPM_LoadKey2 // customer CU2

// customer

HAS Manufacturer Generated K,
TPM 1.2

TPM_PcrRead // CUl
TPM_CreateWrapKey // CU1
TPM_LoadKey2 // CU1
// copy blob to other CU
TPM_LoadKey2 // CU2

Customer Generated K.

TPM 2.0

TPM2_PCR_Read // customer

// send PCRs to TTP
TPM2_PolicyPCR // ttp
TPM2_Create // ttp

// send blob to customer
TPM2_Load // customer CU1
TPM2_Load // customer CU2

TPM 2.0

TPM2_PCR_Read // CU1
TPM2_PolicyPCR // CU1
TPM2_Create // Cul

TPM2_Load // CuU1l
// copy blob to other CU
TPM2_Load // CU2

These are the same commands as used when the HAS manufacturer generates K,
the only difference is that they are now executed by the customer.

TPM 1.2

TPM_PcrRead // CuUl
TPM_CreateWrapKey // CU1
TPM_LoadKey?2 // CU1
// copy blob to other CU
TPM_LoadKey?2 // CU2

7.3 CU Failure

TPM 2.0

TPM2_PCR_Read // CU1
TPM2_PolicyPCR // CU1
TPM2_Create // Cul

TPM2_Load // cul
// copy blob to other CU
TPM2_Load // CU2

In the event of a CU failure, the customer will receive a new CU directly from
the CU factory. This will have the key K, loaded, as per the steps described in
Section 7.1. The customer will however be required to load the customer-specific
key K. Since the key is located beneath the common key K, in the key hierarchy,
the same key blob that is used on the other CU can be used directly on the new CU.
Thus, the key blob of K. is copied to the new CU, and the following commands

are executed:

TPM 1.2

TPM_LoadKey?2

TPM 2.0

TPM2_Load

78 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

8 Related Work

Though there are few examples of widely adopted applications taking advantage
of TPM functionality, several use cases have been considered before. In [WMHI10;
GBO08], the use of TPMs to secure VANETs was proposed and studied. Using
TPMs to increase the security in RFID tags and NFC communication has also
been proposed in [MMY10] and [HT10] respectively.

The use of Certifiable Migration Keys in the Mobile Trusted Module (MTM)
for protecting secret data was proposed in [KJL09].

Today, virtualization is a growing area, and there have been several different
proposals on how to use the TPM in virtual machines. In [Ber+06] a complete
virtualized TPM module is developed, which is then linked to the hardware TPM.
In [ELO8] a para-virtualized solution is discussed. [SSWO08] discusses yet another
design, and also discusses migration of virtual TPMs to a large extent.

The use of TPMs in cloud computing has also been considered in recent years.
In [SGRO9] secure launch and migration of VMs in the cloud is discussed in
the context of trusted computing, and in [AGBI2] secure migration of virtual
machines through the use of the Trusted Platform Module is further discussed.

Use of remote attestation has been considered in many works before [Ber+06;
Gu+08; Nau+10; Sai+04]. In remote attestation, the goal is to provide the contents
of PCRs to a remote party. The PCR values are signed with an AIK and the remote
party can verify through the signature that the system is in a known configuration.
Using an SML, the content of this, which is a set of run programs and their hashes,
can be compared to the signed PCR values. In our work, it is the customer that
verifies the PCRs and the SML.

9 Conclusions

We have proposed a solution for using TPMs to secure sensitive data in a high
availability system. The main challenge is to create customers specific keys which
can only be used in the customer’s own HAS, while at the same time allowing
generic computational units to be produced and shipped as replacement boards.
Since employees come and go, we also do not want to trust employees. Our pro-
posed solution relies on binding the customer specific key to a parent key which is
the same on all boards, and to also bind the key to PCR values that are specific to
a customer. We show that the increased functionality in TPM 2.0 allows a more
secure solution in certain cases. In addition to the proposed solution we define an
APT such that it is possible to upgrade from TPM 1.2 to TPM 2.0 without chang-
ing the communication flow.

References 79

Acknowledgments.

The authors would like to thank the anonymous reviewers for their valuable com-
ments.

References

[AGB12] M. Aslam, C. Gehrmann, and M. Bjorkman. “Security and Trust
Preserving VM Migrations in Public Clouds”. In: Trust, Security

and Privacy in Computing and Communications (TrustCom). June
2012, pp. 869-876.

[Ber+00] S. Berger et al. “vTPM: Virtualizing the Trusted Platform
Module”. In: Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15. USENIX-S§°06. Vancouver, B.C.,,
Canada: USENIX Association, 2006.

[ELOS] P. England and J. Loeser. “Para-Virtualized TPM Sharing”. In:
Trusted Computing - Challenges and Applications. Vol. 4968.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 119-132.

[GB08] G. Guette and C. Bryce. “Using TPMs to secure vehicular ad-hoc
networks (VANETS)”. In: Information Security Theory and
Practices. Smart Devices, Convergence and Next Generation

Networks. Springer, 2008, pp. 106-116.

[Gu+08] L. Gu et al. “Remote Attestation on Program Execution”. In:
Proceedings of the 3rd ACM Workshop on Scalable Trusted
Computing. STC’08. Alexandria, Virginia, USA: ACM, 2008,
pp- 11-20.

[HT10] M. Hutter and R. Toegl. “A Trusted Platform Module for Near
Field Communication”. In: 2010 Fifth International Conference on
Systems and Networks Communications (ICSNC). 2010,
pp- 136-141.

[IBMa] IBM. IBMs Software Trusted Platform Module.
http://ibmswtpm.sourceforge.net/.

[KJL09] D.-W. Kang, S.-I. Jun, and L.-Y. Lee. “A study on migration
scheme for a mobile trusted module”. In: 11th International
Conference on Advanced Communication Technology, 2009. ICACT
2009. Vol. 03. 2009, pp. 1672-1677.

[Mica] Microsoft. The TPM Software Stack from Microsoft Research.
https://tpm2lib.codeplex.com/

http://ibmswtpm.sourceforge.net/
https://tpm2lib.codeplex.com/

80 Paper I: Using TPM Secure Storage in Trusted High Availability Systems

[Micb]

[MMY10]

[Nau+10]

[Sai+04]

[SGR09]

[SSWO08]

[TPM12]

[TPM20a]

[WMH10]

Microsoft. TSS.MSR v1.1 TPM2 Simulator. http:
//research.microsoft.com/en-US/downloads/35116857-
e€544-4003-8e7b-584182dc6833/default. aspx.

M. Mubarak, J. Manan, and S. Yahya. “Mutual Attestation Using
TPM for Trusted RFID Protocol”. In: Network Applications
Protocols and Services (NETAPPS). 2010, pp. 153-158.

M. Nauman et al. “Beyond Kernel-Level Integrity Measurement:
Enabling Remote Attestation for the Android Platform”. In: Trust
and Trustworthy Computing. Vol. 6101. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 1-15.

R. Sailer et al. “Design and Implementation of a TCG-based
Integrity Measurement Architecture”. In: Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13. SSYM’04.
San Diego, CA: USENIX Association, 2004, pp. 16-16.

N. Santos, K. P. Gummadi, and R. Rodrigues. “Towards trusted
cloud computing”. In: Proceedings of the 2009 conference on Hot
topics in cloud computing. USENIX Association. 2009.

A.-R. Sadeghi, C. Stiible, and M. Winandy. “Property-Based TPM
Virtualization”. In: Information Security. Vol. 5222. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2008, pp. 1-16.

Trusted Computing Group. 7PM Main, Part 1-3, Specification 1.2,
Revision 116. Mar. 2011.

Trusted Computing Group. Trusted Platform Module Library
Specification, Family *2.0”, Level 00, Revision 01.07. Mar. 2014.

A. Wagan, B. Mughal, and H. Hasbullah. “VANET Security
Framework for Trusted Grouping Using TPM Hardware”. In:
Communication Software and Networks, 2010. ICCSN ’10. 2010,
pp. 309-312.

http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx

Enabling Key Migration
Between Non-Compatible
TPM Versions

Abstract

We consider the problem of migrating keys from TPM 1.2 to the backwards in-
compatible TPM 2.0. The major differences between the two versions introduce
several challenges for deployed systems when support for TPM 2.0 is introduced.
We show how TPM 2.0 support can be introduced while still maintaining the
functionality specified by TPM 1.2, allowing a smoother transition to the newer
version. Specifically, we propose a solution such that keys can be migrated from
TPM 1.2 to TPM 2.0, while retaining behavior with regard to e.g. authorization,
migration secrets, PCR values and CMK functionality. This is achieved by uti-
lizing new functionality, such as policies, in TPM 2.0. The proposed solution is
implemented and verified using TPM emulators to ensure correctness.

1 Introduction

There are different versions of the TPM, which differ from one another in several
ways. In this paper we consider TPM 1.2, introduced in 2003, and TPM 2.0
which was introduced in 2012. TPM 2.0 is not backwards compatible with TPM
1.2, but nevertheless TPM 2.0 chips are now available [Infa] and have started to
ship in devices [Infb].

Linus Karlsson and Martin Hell. “Enabling Key Migration Between Non-Compatible TPM
Versions”. In Trust and Trustworthy Computing, TRUST 2016, Vienna, Austria. LNCS Vol. 9824,
pp-. 101-118, Springer.

82 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

We consider the process of migrating from the TPM 1.2 generation chips, to
the newer TPM 2.0. As new equipment comes with TPM 2.0 chips, we want to be
able to move or copy keys from TPM 1.2 to the new chips, while still maintaining
the same functionality. However, because of the lack of backwards compatibility,
there is no such support built into the TPM specifications. This presents a problem
when we would like to use the same keys even when moving to a newer TPM, for
example to be able to decrypt previously encrypted data. In addition, we may want
to continue to use these keys with the same functionality, despite the differences
between the specifications.

The lack of backwards compatibility means that this migration has to be done
manually. Keys have to be converted between different formats, and adapted to
the different feature sets of the two standards. Some features in TPM 1.2 have no
direct equivalent in TPM 2.0, but identical or similar behavior can be achieved
by using new features of TPM 2.0. The goal of this paper is to give a solution
for how to achieve this for all different key types and migration alternatives in
TPM 1.2. As an example, in TPM 1.2 there is a concept of a migration secret,
which authorizes the migration of a key to another TPM. This migration secret
has no direct counterpart in TPM 2.0, but the same behavior can be implemented
using functionality only available in the TPM 2.0 specifications. Another example
is the use of Certifiable Migratable Keys (CMKs) in TPM 1.2, which also requires
a non-trivial design by expressing the functionality as policies in TPM 2.0.

We describe a process which allows us to migrate keys from a TPM 1.2 to a
TPM 2.0. We start by determining a set of requirements, and present a solution
which performs migration according to the presented requirements. We start by
implementing the equivalent functionality of TPM 1.2°s migration secret in TPM
2.0, using constructions only available in the newest TPM version. We then look
at keys bound to Platform Configuration Register (PCR) values, and present a way
to handle the incompatibilities in key format between TPM 1.2 and TPM 2.0. We
also present a solution for CMKs, such that equivalent behavior is achieved in both
TPM versions. We do not consider the case of TPM 2.0 to 1.2 migration, since it
is not likely that new TPM 1.2 equipment will be deployed once equipment with
TPM 2.0 has been deployed.

The paper is organized as follows. Section 2 presents a brief overview of TPM
1.2 and 2.0. In Section 3 we present our goals and requirements. In Section 4 we
describe our proposed solution for different relevant scenarios, which are then ex-
tended to the case of CMKs in Section 5. Section 6 describes the implementation.
Finally in Section 7, we discuss some related work. Section 8 concludes the paper.

2 Overview of TPM 1.2 and TPM 2.0

This section will give a short introduction to TPM 1.2 and 2.0, with focus on
issues related to key migration. For a complete review, consult the specifications

[TPM12; TPM20Db].

2 Overview of TPM 1.2 and TPM 2.0 83

2.1 Overview of TPM 1.2 and Certifiable Migratable Keys

A'TPM 1.2 provides a key hierarchy of asymmetric keys. Keys can be of different
types, for example storage keys, signing keys, or decryption keys (the last called
binding key in TPM 1.2). Since the keys are asymmetric, they consist of two parts:
one public and one private part. The private part of every key is encrypted with
the public part of the parent key. Only a storage key can be the parent of another
key.

Certain operations on the TPM, e.g. some commands related to migration,
must only be performed by the TPM owner. These operations are authorized by
proving knowledge of an owner secret, which is set when someone takes ownership
of the TPM. To be able to use the private part of a key, e.g. to decrypt or sign
data, the user must provide a usage secrer. This secret is stored inside the key in the
TPM, and can be unique for each key.

Copying keys between different TPMs is called migration, and was introduced
in TPM 1.1[TPM11]. To authorize such an operation the TPM owner must first au-
thorize the destination using the command TPM_AuthorizeMigrationKey. We
note that the TPM owner can authorize any destination, thus making it possible to
migrate the key to any TPM, or even to a keypair generated outside any TPM. In
addition, the user performing the migration must prove knowledge of the migra-
tion secret, which is a secret set on key creation. If this secret is not known, the key is
not migratable. This is verified during execution of TPM_CreateMigrationBlob,
which outputs a data blob which can be transferred to the destination TPM. At the
destination, the key can be loaded by TPM_LoadKey2, possibly after conversion
by TPM_ConvertMigrationBlob.

In TPM 1.2, CMKs were introduced. Their migration is further restricted,
such that instead of the migration secret above, an authorization from a trusted
entity, called the Migration Selection Authority (MSA), is required. The MSAs are
chosen at key creation time. During the migration, the MSA must approve the
destination, either implicitly by migrating the key to the MSA itself, or by signing
a ticket containing the destination. The signature is done using the private key of
the MSA. By signing the ticket, the MSA approves the migration of the specified
key to a specific destination. This signature is required by the source TPM to
actually perform the migration.

2.2 Overview of TPM 2.0

In TPM 2.0 the asymmetric key hierarchy has been generalized, and has been
replaced with an object hierarchy. Objects can be asymmetric or symmetric keys,
or data blobs. The type of the object is determined by a set of flags on the object:
sign, decrypt, and restricted. An object with the flags decrypr and restricted set is a
storage key, since it can be used to encrypt and decrypt the private parts of child
keys, and the restricted bit tells the TPM to operate only on data prepared by the
TPM (for example keys). However, the storage keys in TPM 2.0 protect its child

84 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

keys by using symmetric encryption instead of asymmetric. The symmetric key is
derived from a seed included in the key itself. In addition to this, TPM 2.0 allows
for a wide range of ciphers and algorithms, including different symmetric ciphers
and hash functions.

In TPM 2.0, migration has been renamed to duplication. Indeed, this is a
more appropriate terminology, since keys are not removed from the source when
performing a migration. Instead the key will exist in both TPMs. There are two
flags connected to the duplicability of a key: fixedTPM and fixedParent. A key
with fixedTPM set can never leave the TPM, and can thus not be duplicated. The
other flag, fixedParent, tells us if the key is fixed to its parent. If the flag is set, the
key cannot be explicitly duplicated, but it may still be loaded in another TPM if
it is possible to duplicate its parent.

Just like in TPM 1.2, use of the private part of a key requires a usage secret,
but there is no direct equivalent of the migration secret. Instead, a more general
authorization mechanism has been introduced in TPM 2.0, namely policies.

2.3 DPolicies in TPM 2.0

A major addition in TPM 2.0 is the introduction of policies. A policy can be used
to authorize different operations on an object in the hierarchy. The policy is set
at creation time, by including a value authPolicy in the object. This value is
created by repeatedly hashing different values from different policy commands.
Possible commands are for example policies based on time, signatures, or secret
values. Different policies can also be combined using OR.

Before executing a command using the object, a policy hash must be built in a
policy session. The session also includes context specific values which are checked
during command execution, for example if we are authorizing duplication or usage
of the object, or what authorization method to use. The resulting policy hash of
the policy session is then compared to the authPolicy in the object to authorize
the command execution.

In this paper we are mostly concerned with duplication and authorization.
Thus, we are only interested in a subset of the different policy commands:

* TPM2_PolicyAuthValue requires the usage secret of the object being au-
thorized, and does the authorization using a HMAC.

* TPM2_PolicyAuthorize allows us to modify an existing policy. A new
policy is signed using the private key of an authority, and if this signature is
valid, the policy is included in the policy session.

e TPM2_PolicyCommandCode limits the authorization to a certain command,
for example to authorize duplication only. This is done by setting a com-
mand code in the current policy session.

2 Overview of TPM 1.2 and TPM 2.0 85

* TPM2_PolicyDuplicationSelect limits the allowed destination parent
when performing a duplication.

* TPM2_PolicyOR is a logical OR policy, which is true if the current policy
hash matches any of the conditions in this policy.

* TPM2_PolicyPassword requires the usage secret of the object being au-
thorized, and does the authorization using the password in clear.

* TPM2_PolicyPCR requires the PCRs (see Section 2.4) to have a specific set
of values.

* TPM2_PolicySecret requires the usage secret of another object on the
TPM

* TPM2_PolicySigned requires a digital signature.

2.4 Platform Configuration Registers

BothTPM 1.2 and 2.0 have a number of Platform Configuration Registers (PCRs).
Each PCR stores a hash value, which is created by repeatedly calling TPM_Extend
or TPM2_Extend. The extend operation depends both on the previous PCR value,
and on the new data. This can be used to store measurements of hardware config-
uration and software on the host. Keys in both TPM 1.2 and 2.0 can be bound
to PCR values, such that the use of a key requires certain PCRs to be in a speci-
fied state. This ensures that such keys are only usable in a known environment. In
addition, the PCR values can be read by using the commands TPM_PCRRead and
TPM2_PCR_Read.

2.5 Comparing Migration in TPM 1.2 and TPM 2.0

From the descriptions above we see that when it comes to migration, there are
several differences between the two TPM versions.

To perform a migration of a (non-CMK) TPM 1.2 key, the following criteria
must be fulfilled:

1. The key must have been created with the key flagmigratable set to TRUE.
2. 'The migration secret must be known.
The TPM owner must authorize the migration destination.

The usage secret of the parent key on the source TPM must be known.

RAE N

The usage secret of the parent key on the destination TPM must be known.

In comparison, the following criteria must be fulfilled when migrating a TPM
2.0 key:

86 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

1. The key must have fixedParent CLEAR.

2. The command code of the policy session must be TPM_CC_Duplicate, i.e.
the key must have a policy which allows for duplication.

3. 'The usage secret of the parent key on the source TPM must be known.

4. 'The usage secret of the parent key on the destination TPM must be known.

We first note the similarities, namely that for both TPM versions, the usage
secret of the parent key on the source TPM must be known, such that the key
to be migrated can be loaded into the TPM. In addition, the usage secret of the
destination TPM’s parent key must also be known, such that the key to be migrated
can be added as a child key.

In TPM 1.2 there is an explicit flag which tells whether or not the key is mi-
gratable. This is not the case in TPM 2.0, where there are two flags which control
the migratability of a key. If fixedParent is SET, then the key has a fixed parent,
and cannot be migrated directly (however, it could still be migrated if its parent is
migratable). If fixedTPM is SET, the key can never be migrated. We note that it
is not possible to create a key with fixedParent CLEAR and fixedTPM SET, so
a sufficient condition is that fixedParent is CLEAR.

Another difference is the authorization of the migration. In TPM 1.2 this is
done by proving knowledge of the migration secret. In TPM 2.0, it is done with
a policy session that authorizes the migration. We note that the policy session is a
more generic approach, which supports multiple ways of authorizing the migration
through the use of any policy command. The only requirement is that there exists a
command in the chain of policy commands that explicitly sets the commandCode
to TPM_CC_Duplicate, since duplication is a special authorization role in TPM
2.0.

Finally, we note that there is no requirement for owner authorization when
performing a migration in TPM 2.0.

Looking at the migration of a CMK in TPM 1.2, the following criteria must
be fulfilled:

1. The MSA must authorize the migration destination.
2. The TPM owner must authorize the migration destination.
3. 'The usage secret of the parent key on the source TPM must be known.

4. 'The usage secret of the parent key on the destination TPM must be known.

Compared to the non-CMK criteria described above, the migration secret cri-
terion is replaced by the approval of the MSA. TPM 2.0 does not have the concept
of CMKs, but the behavior can be implemented by the use of policies. Details

will be presented later in Section 5.

3 Goals 87

3 Goals

We want to migrate a migratable key from a source TPM (TPM 1.2), hereafter
called TPMg, to a destination TPM (TPM 2.0), denoted TPMp. The key to be
migrated from TPMg to TPMp is denoted K.

If the source key is a CMK, then the migration must also be approved by
an already existing trusted third-party, called the authority/ MSA. This third party
may, or may not, have a TPM module installed, but let’s assume that this is the
case, and call this party TPMa.

When migrating a key between two TPMs of the same version (i.e. either
1.2 = 1.2, or 2.0 — 2.0) we can immediately import the binary migration blobs
produced by the source TPM into the destination TPM. We can also be sure that
all features are supported. However, when we do a migration from 1.2 — 2.0 the
migration blob must be converted manually, taking into account the differences
between the two versions.

We introduce a conversion authority which is a trusted entity that performs the
actual binary conversion between 1.2 and 2.0, and denote this with TPMc.

Introducing this trusted entity does not lower the security of our proposed
solution. If the key K is a CMK, there is already a trusted third-party (the au-
thority/MSA). If a new, separate, conversion authority is undesirable, it would be
possible to extend the MSA to also be the conversion authority.

In the case of a non-CMK, the source key owner is in full control of K. This
means that the owner may migrate it to any destination, including a destination
outside of a TPM. Thus the owner has full responsibility and opportunity to choose
a trusted conversion authority. It is possible to have the conversion authority on
either the source or destination, a separate third system is not required. Seeing the
conversion authority as a separate entity does however provide a clear separation
of concerns, and simplifies reasoning in this paper.

3.1 Requirements

We want our solution to maintain the same functionality with respect to autho-
rization when moving from TPM 1.2 to TPM 2.0. Thus, if an entity is authorized
to migrate or use a key at the source TPM, it should have the possibility and au-
thorization to do so also at the destination TPM.

To maintain the functionality when moving between the different TPMs, we
identify a number of requirements which must be supported by the conversion
authority.

R1. Keep the same private and public part of the RSA key, such that it can be
used to decrypt previously encrypted data, or create identical signatures.

R2. Keep the same authorization requirements for key usage.

R3. Keep the same authorization requirements for key migration.

88 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

R4. If a key requires a certain state (PCR values) of the TPM, the same state
should be required after migration.

R5. Support all key types of the TPM 1.2, i.e., signing, decryption, and storage
keys. Both non-CMK and CMK keys should be supported.

R6. Once migrated to aTPM 2.0, it should be possible (if authorized) to further
migrate the key to another TPM 2.0.

R7. The migration should be deterministic, such that if the same key is migrated
twice, the result at the destination TPM should be identical after both mi-
grations.

The motivation for R7 is that when migrating a storage key in TPM 1.2 or
TPM 2.0, its child keys are implicitly migrated as well, since they can just be
loaded at the destination TPM with the respective Load-commands. This allows a
hierarchy to be moved incrementally, simply by moving the child keys to the des-
tination. However, when migrating keys between TPM 1.2 and 2.0, we will have
to perform a conversion step. To be able to perform the migration incrementally
at different occasions, the steps involved must be deterministic.

4 Migration Scenarios

We will look at the following different migration scenarios:

1. Migration of a simple, single, key from TPMg to TPMp. Only signing keys
and decryption keys, without considering PCR values.

2. Migration of a simple, single, key requiring specific values of the PCRs.
3. Migration of a storage key, including its child keys.
4. All of the scenarios above, for CMKs.

4.1 Signing or Decryption Key

In this case we want to migrate a signing or decryption key from TPMg to TPMp.
Clearly we must retain both the private and public portions of the key when mi-
grating to TPMp. Furthermore we assume that this key is the child key of the
storage root key (SRK), but the steps will be identical for any parent key.

Because of the differences between TPM 1.2 and 2.0, both in functionality
and in the actual binary migration blob format, we must do a conversion of the
binary migration blob before importing it into TPMp. This means that we cannot
simply perform the migration to the SRK of TPMp. If we did, the migration
blob could only be decrypted by the destination TPM, which would also have to

4 Migration Scenarios 89

perform the actual conversion. This is not possible, since the conversion cannot

be performed inside the destination TPM. Rather, we must use the previously

introduced conversion authority, TPMc. The conversion authority has its own

RSA keypair, which will act as an intermediate destination during the migration.
The outline of the conversion is as follows, also depicted in Figure 1.

1. The owner of TPMs, and the owner of K authorize the migration of K
to TPMc, by proving knowledge of the owner secret and migration secret
respectively.

2. A migration blob is created by the command TPM_CreateMigrationBlob.

3. 'The migration blob is first decrypted by TPMc, and then converted to a
TPM 2.0-format, and migrated to the final destination TPMp.

4. TPMp imports the migration blob and now has its own copy of K.

TPM 1.2 (TPMs) Conversion authority (TPMc) TPM 2.0 (TPMp)

migrate | TPM 1.2 10 er{ TPV 2.0] migrate
fffffff -l migration r---- > key ******** >
blob

Figure 1: Overview of migration using the conversion authority

Conversion

The conversion authority will perform the conversion of the key. The following
are some important steps in this process.

TPM 2.0 supports a wide range of hash functions, and each key has a property
nameAlg which stores the algorithm for the key. We set nameAlg of the TPM
2.0 key to be SHA-1, since that is the only supported hash algorithm in TPM 1.2.
After this, the usageAuth in the TPM 1.2 key (which is the SHA-1 hash of some
secret) can be moved as-is to the TPM 2.0 formatted key.

Next, we want to move the public and private part of the source key. The
public part of the key, which is simply a structure from the TPM 1.2 specification,
must be sent separately to TPMc, since it is not included in the migration blob.
This contains the public modulus and exponent.

The private part of the key, which we obtained by manually decrypting the
migration blob with the key of TPMc, can be copied directly to the sensitive

90 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

structure in TPM 2.0, since both TPM specifications states that the private part
of RSA keys is one of the two RSA primes.

Migration of the Migration Secret

In TPM 1.2, each key has a migration secret, in addition to usage secret. If the
value of this secret is zpmProof, no migration is possible since tpmProof is a value
internal to the TPM. However, if the migration secret is the hash of a secret known
to the user, migration is possible.

InTPM 2.0 there is no direct equivalent of the migration secret (which is called
migrationAuth) in TPM 1.2. An analysis of the migration secret functionality
provides the following four options.

1. Disallow any further migration, that is, once migrated to TPM 2.0, no more
migrations will be possible. This violates requirement R6.

2. Always allow migration, that is, anyone can migrate the key. This violates
requirement R3.

3. Only allow migration if the user knows the usageAuth. This can be imple-
mented through a simple policy. However, this violates requirement R3.

4. Construct a more complex policy, which emulates the migrationAuth be-
havior of TPM 1.2.

Of these options, option 4 is the only one which fulfills our requirements, and
most closely resembles the original behavior of TPMg. Thus, when migrating K
to TPMp, we wish to keep the same migration secret, such that only entities with
knowledge of the migration secret can migrate the key further.

In TPM 2.0, migration authorization is performed using policies. Thus, to
keep the same migration secret, we must find a policy scheme that mimics the
behavior of TPM 1.2.

An initial thought may be to utilize the commands TPM2_PolicyAuthValue
or TPM2_PolicyPassword command in combination with setting the command
code with TPM2_PolicyCommandCode (TPM_CC_DUPLICATION), which would al-
low migration to any destination as long as a secret is known. However, both
TPM2_PolicyAuthValue and TPM2_PolicyPassword use the authValue of the
key, which is the same secret which is required for regular usage of the key. This
would correspond to our discarded option 3 in the list above.

In the general case, the migration and usage secret will be different, and thus
these two policy commands do not offer a solution to our problem. Another pos-
sibility is to use TPM2_PolicySecret. This policy command uses the authValue
of another entity in the TPM. Thus we could imagine a scenario where a new, sepa-
rate entity, whose only purpose is to keep the previous migrationAuth as its own

4 Migration Scenarios 91

usage auth, is created. In this way, we could create a policy with the command
TPM2_PolicySecret which uses this extra entity.

However, we have chosen another approach, which somewhat mimics the sce-
nario where we have an MSA that approves our migration. This makes our pro-
posed solution more consistent when we later on start considering CMKs. The
proposed solution is depicted in Figure 2.

TPM 1.2 (TPMs) TPM 2.0 (TPMp)

Parent key Parent key

| \
/ Ky, (sign)

usageAuth L----:i_- - authValue authValue
migrationAuth - authPolicy | authPolicy

Figure 2: Migration secret in TPM 2.0

The usageAuth from our TPM 1.2 key is copied directly to the authValue
field of the TPM 2.0 key. We also copy the migrationAuth from the TPM 1.2
key to the authValue field of a separate, newly created, signing key, called the
sibling key (Kp), on the TPM 2.0. Thus, to be able to create signatures using
the sibling key, we must know the authValue of this key (which is the original
migrationAuth).

To control the migration of the key, we include a policy in the authPolicy
field of the key K at the destination TPM. We construct the policy such that a
signature from the sibling key is required for a migration to succeed. To construct
such a signature, the user clearly must have knowledge of the migration secret.

Constructing a policy which validates a signature can be done by using the
policy command TPM2_PolicySigned. The policy will require the TPM user to
present a signature from the sibling key (thus proving possession of the migration
secret), and if valid, TPM2_PolicyCommandCode (TPM_CC_Duplicate) is used
to authorize a migration to any destination, mimicking the behavior of TPM 1.2.

Furthermore, in the authPolicy field of the sibling key we include a policy
which allows migration of the sibling key as long as the authValue is known. This
allows us to migrate both the sibling key and K to another TPM 2.0 destination,
which fulfills requirement R6.

When creating K, care must be taken to ensure that we get a determinis-
tic creation. Simply creating a new, random, RSA keypair would violate require-
ment R7, since every migration of K would result in different K, and thus dif-
ferent authPolicy in K. Instead, we must base the generation of K, on K, to

92 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

Parent key (TPMp)

(Psib» gsib) = genPrime(h(pl|q))
(p,q) " (Psib» Gsib)

Figure 3: Generating the primes for K, based on (p, ¢) of K

ensure that the generation is deterministic, yet unique for all keys. Assuming that
the original private part of K, the pair of primes (p, ¢), is random, we use a hash
of (p, q) as the seed to the prime number generator to construct new primes for
the sibling key. This is similar to how TPM 2.0 generates primary objects (such
as the SRK) using the primary seeds in the TPM. The process is depicted in Fig-
ure 3. Since we assumed that the original (p, ¢) were random primes, our derived
seed can also be considered random, thus giving a deterministic, but still secure
K. Clearly, if someone has knowledge of (p, ¢) of K, they would be able to de-
rive Ky, and authorize a migration. However, if (p, ¢) of K is already known,
there is no reason for an attacker to do a migration, since the private part of K is
already compromised.

Owner Secret

In TPM 1.2 the TPM owner is also required to authorize the migration. However
this is not the case in TPM 2.0. We propose a solution where an extra signing key
is introduced, similar to the sibling key above. However, different from the owner
secret, this key is not unique per TPM, but rather per key. In a sense, it becomes an
extra migration secret. It does deviate slightly from the behavior in TPM 1.2 since
this owner signing key will have to be identical on all TPM 2.0 chips. The secret
of the owner signing key is selected during the initial 1.2 to 2.0 migration, and the
key will be created by the conversion authority. Just like for the migration key, the
actual verification of the signature is done by including a TPM2_PolicySigned in
the policy chain.

4.2 PCR Bound Keys

InTPM 1.2, key usage can be restricted such that both certain PCR values (through
pcrSelection) and knowledge of the usageAuth is required. In TPM 2.0, this
must be implemented through the use of policies. As can be seen in [TPM20Db,
Part 1, Annex A], this can be realized by combining the use of TPM2_PolicyPCR
and TPM2_PolicyAuthValue. When converting the key to TPM 2.0-format, it
is important to set the userWithAuth-attribute to CLEAR, since otherwise the
user could circumvent the PCR requirement by only providing the authValue.

4 Migration Scenarios 93

When migrating and converting from 1.2 to 2.0, the PCR values need to be
moved from the pcrSelection structure and instead be included as a part of the
TPM2_PolicyPCR policy.

However, it is not possible for TPMc to extract the PCR values from the TPM
1.2 migration blob. This is because the TPM 1.2 PCR structure present in the
TPM 1.2 key only contains the hash over a structure containing multiple PCR
values. The exact steps to calculate this hash is described in [TPM12, Part 2, Sec.
5.4.1].

To be able to convert the PCR values to a format suitable for TPM 2.0, we
would require access to each individual PCR value. In TPM 2.0 we will use the
hash of the concatenation of all PCR values in the TPM2_PolicyPCR command,
which is not the same structure that were used in TPM 1.2.

Thus, since we cannot extract each individual PCR value from the composite
hash of the key in TPM 1.2, we cannot reconstruct a TPM 2.0 key bound to the
exact same PCR values, at least not given only a migration blob. Therefore, the
PCR values from TPMg must be provided separately to the TPM¢ during the
conversion step.

A migration using TPM_CreateMigrationBlob does not require that the
PCR values of the TPM are in the expected state. This means that we cannot
be sure that reading PCR values using TPM_PCRRead returns the PCR values re-
quired to use the key. Instead, this must be verified by the conversion authority.
Assuming that the PCR values, and the corresponding PCR index, are sent to the
conversion authority, it can verify that these are indeed the correct values by calcu-
lating the hash in the same way as the TPM 1.2, and then compare it to the hash
in the migration blob. If they match, TPMc can then use the PCR values when
converting the key for TPM 2.0.

Assuming the correct PCR values are sent to the conversion authority, we can
construct a policy using TPM2_PolicyPCR followed by TPM2_PolicyAuthValue,
which when combined will require both the correct PCR values and the correct
usage secret.

However, we must also combine this with the policy for migration authoriza-
tion in Section 4.1, such that we both can have PCR requirements and migration
requirements. This does not mean that a migration requires correct PCR values
(this is not required in TPM 1.2 either), but that one of the two policy branches
is satisfied.

Thus, we create a policy with two branches, combined with TPM2_PolicyOR,
as in Figure 4. Either of the two branches can be satisfied, if the left branch is
satisfied, key usage is granted (if the PCR values are correct). If the right branch
is satisfied, migration is authorized.

94 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

TPM2_PolicySigned

v
TPM2_PolicyPCR TPM2_PolicySigned
Y v

TPM2_PolicyAuthValue TPM2_PolicyCommandCode

o~

TPM2_PolicyOR

Figure 4: Policy for PCR combined with migration authorization

4.3 Key Hierarchies

Up until now, we have only considered the case where K is either a signing or a
decryption key. If K is a storage key with child keys, we must be able to migrate
the complete hierarchy as well.

Normally, when migrating keys either from 1.2 to 1.2, or from 2.0 to 2.0, there
is no need to explicitly migrate the child keys. If the parent key is migrated and
thus available in the destination TPM, all child keys can simply be loaded directly
with TPM_LoadKey2 or TPM2_Load, using the same encrypted private part on
both the source and destination, without any migration.

However, due to the difference in encryption and overall key storage format
between 1.2 and 2.0, a more elaborate scheme is required when migrating a hier-
archy from 1.2 to0 2.0.

Recall that in TPM 1.2, the parent’s public key is used to encrypt the child
key’s private part. Thus, asymmetric encryption is used. However, in TPM 2.0,
symmetric encryption is used instead. The child key’s private part is encrypted
using a symmetric key derived from a seed in the parent key. Normally, this seed
is generated upon key creation, and is based on data from the RNG in the TPM.
However, due to requirement R7, we require a deterministic seed. Otherwise,
subsequent migrations of the same hierarchy would yield different seeds, and child
keys would be encrypted with different symmetric keys, even though they share
the same parent.

When migrating a complete key hierarchy, we introduce extra requirements
on our solution:

1. When migrating a hierarchy, only the migration secret of the hierarchy’s
root key should be required to migrate the root and all of its descendant
keys.

2. It should be possible to migrate parts of a hierarchy at different occasions.

Assume the hierarchy of keys given in Figure 5. If we want to migrate K,
including its child keys C1 and C2, we first perform a migration of K as usual, i.e.
just like if it was a signature or decryption key. However, TPMc can see that K is

4 Migration Scenarios 95

Figure 5: Key hierarchy

TPM 1.2 (TPMs) TPM 2.0 (TPMp)

SRK
AE

(1] 2] @] |cw| [C2] |2

Figure 6: Key hierarchy and sibling keys

a storage key, and if this is the case we include a seed inside the TPM 2.0-version
of the key.

We calculate the seed as seed = SHAI1(p||q). The reason for using SHA-1 is
because the seed must be of the same size as the nameAlg of the key, which is set
to SHA-1 to be able to use the same usageAuth as in TPM 1.2.

When migrating a hierarchy, we also provide TPM¢ with the encrypted private
parts of the child keys of K, which we wish to migrate to TPMp. When TPMc
receives this bundle of keys, it can use the private parts of K to decryptall the other
encrypted private parts of the child keys. The child keys can then be converted
to TPM 2.0-format, and re-encrypted using the symmetric key derived from the
seed.

This approach will work for hierarchies of any depth. However, the hierarchy
must be preserved inside the bundle, since TPM¢ must have access to the parent
of a child key to be able to decrypt it. We can also migrate only parts of a deep
hierarchy, as long as all relevant parents leading to K are included.

When migrating keys in the hierarchy, their migration secret must be preserved
just as before. This means that in addition to converted child keys, we will also get
sibling keys for each converted child key. The sibling keys are placed so that they
share parent with the key that they correspond to, see Figure 6.

96 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

5 Certifiable Migratable Keys

In TPM 1.2, a CMK can only be migrated with the approval of both the TPM
owner and a third-party Migration Selection Authority (MSA).

In TPM 2.0, there is no direct equivalent of CMK, but the behavior can be
achieved by using policies as in Figure 7. TPM2_PolicyAuthorize allows us to
replace the previous commands in the policy chain, in this case, it allows us to
replace TPM2_PolicyDuplicationSelect with another destination, as long as
we can present a valid signature of the policy hash. This signature is done by the
authority (MSA in TPM 1.2 terminology).

In this way the MSA must approve the destination before any migration can
be performed, and the approval is only valid for a specific destination.

TPM2_PolicyDuplicationSelect

v
TPM2_PolicyAuthorize

Figure 7: Policy for CMK

A complication introduced by CMKs is that TPM 1.2 introduces restrictions
on the place of CMKs in the key hierarchy. A CMK cannot be the child of a
migratable key, nor can it be the child of another CMK. When we convert a CMK
into TPM 2.0 format, we must ensure that these restrictions still hold. Otherwise
we would violate requirement R3, since we would be able to further migrate the
child CMK if we were authorized to migrate the migratable parent.

Thus, when migrating a CMK, we must ensure that the destination parent is
not a migratable key. This is the responsibility of the MSA, and is not discussed
any further.

We consider the three cases in the previous section, and construct the required
policy for each case.

5.1 Signing or Decryption Key

When using CMKs, there is no migration secret that the key owner needs to
present. In Section 4.1 we presented a solution where two TPM2_PolicySigned
commands were included in the authPolicy of K. In the CMK case, we can re-
move one of the signatures, since there is no migration secret. This also means that
no sibling key is required, we can consider the key of the MSA as our (remote)
sibling key.

Since there is no built-in requirement in TPM 2.0 for the owner to authorize
a migration, we introduced an owner signing key. This signature is still required
in the CMK case.

We can do this by simply adding the TPM2_PolicySigned command to the
end of the chain. Note that adding it to the start of the chain would make it possi-
ble for the authority to override the owner authorization, which we want to avoid.

6 Implementation 97

Thus the chain now look like in Figure 8. TPM2_PolicyDuplicationSelect
will set the command code to TPM_CC_Duplicate, so no explicit call to set the
command code is required after TPM2_PolicySigned.

TPM2_PolicyDuplicationSelect

'

TPM2_PolicyAuthorize

'

TPM2_PolicySigned

Figure 8: Policy for CMK, with owner authorization

5.2 PCR Bound Keys

We start with the policy from the previous section, and add a PCR policy, similar
to what we did in Section 4.2. Again, we get two different branches of the policy,
one for usage, and one for migration, see Figure 9. Just like before, either of the
two branches can be satisfied. If the left branch is satisfied, key usage is granted (if
the PCR values are correct). If the right branch is satisfied, migration is authorized,
because TPM2_PolicyDuplicationSelect will set the correct command code
for migration.

TPM2_PolicyDuplicationSelect

v
TPM2_PolicyPCR TPM2_PolicyAuthorize
v v
TPM2_PolicyAuthValue TPM2_PolicySigned

\ /
TPM2_PolicyOR

Figure 9: Policy for PCR combined with migration authorization and CMK

5.3 Storage Keys

Recall the restrictions on CMKs in the key hierarchy. A CMK may not have
a migratable parent, neither a regular migratable key nor a CMK. The effect is
the only possible key hierarchy which includes CMKs is a hierarchy where the
root node is a CMK. This means that we can proceed as in Section 4.3, with the
additional requirement that the root CMK key gets a policy just like in Section 5.1.

6 Implementation

To ensure that our conversion process works as intended, we have implemented
all the above test cases, and verified their behavior. The TPMs have been emulated

98 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

in software. For TPM 1.2, IBM’s Software TPM version 4720 [IBMa] has been
used. For TPM 2.0, Microsoft’s TPM2 Simulator version 1.1 [Micb] has been used.
To simplify the implementation, we have assumed the following:

e All'TPM 1.2 keys are in the TPM_KEY12-key format.

* K is 2048 bit RSA, two primes. Two primes and RSA is a requirement for
migratable keys according to [TPM12, Part 2, Sec. 10.7].

e The default RSA exponent (216 + 1) is used for all keys. For storage keys
this is also required by the TPM 1.2 specification.

The TPM 1.2 specification in [TPMI2] has no defined formats on how to
send migration packages between the different entities. It does, however, exist a
specification [Tru05] which describes an XML schema for supplying information
about keys during the migration phase. This specification is, however, not fully
updated for TPM 1.2, but rather based on TPM 1.1, and thus we have not used
this XML-based approach in our implementation.

Instead, since our implementation was primary meant for testing and evalua-
tion purposes, we have simply passed files with binary content between the differ-
ent entities.

7 Related Work

While there are few widespread applications that rely on the functionality provided
by the TPM, there are examples of existing pieces of software, and some other
proposed use cases. From Microsoft we have both Bitlocker [Bit], used for full-
disk encryption, and Virtual Smart Cards [Micl4], which uses the TPM instead
of physical smart cards to store private keys. Examples of proposed use cases for
the newer TPM 2.0 are for example the use of TPM for tamper-proof logging
[Sin+14], or the use of TPM 2.0 for electronic identities [NEA14].

Related to the challenge of providing consistent behavior between the two
TPM versions, in [Hel+15], the authors design a unified API which implements
their functionality on both TPM 1.2 and 2.0. In contrast to this work, they con-
sider the functionality for a certain use case, and then create two different and
separate implementations, one for each TPM version, with no possibility of key
migration between them.

The use of TPMs to provide trusted computing functionality within cloud
computing is an area where there also has been development and research. In
[SGRO9] the use of trusted computing in cloud platforms is discussed, and in
[Sri+12] trusted snapshots of running virtual machines is discussed. Related to
migrating keys between TPMs are ways of sharing keys between different TPMs.
A cloud-based solution is proposed in [Che+14].

8 Conclusions 929

8 Conclusions

We have proposed a solution to make it possible to move or copy key material
from TPM 1.2 to TPM 2.0. Even though the two TPM versions differ signifi-
cantly in functionality, and offer no backward compatibility, we have presented a
design which allows the migration of keys between different versions, while still
maintaining the same functionality. This allows users of the current TPM 1.2 ver-
sion to start using the newer TPM 2.0 chips, still keeping the same encryption keys
and functionality. In this way, previously encrypted data can be decrypted with
the same set of authorization requirements as before. The required functionality
was first identified and organized as a set of requirements. After this we looked at
several different cases, where each case corresponded to different properties of the
source key on the TPM 1.2.

We presented a way to provide the migration secret functionality of TPM 1.2
also in TPM 2.0. By introducing sibling keys and using policies, we can maintain
the same authorization requirements in both TPM versions. We also handle mi-
gration of PCR bound keys from TPM 1.2 to TPM 2.0. Because of the differences
in key format between the two versions, the migration requires PCR values to be
sent to the conversion authority. The conversion authority can then verify the
values against the source key before including them in the destination key. In ad-
dition to this, we showed how the TPM 1.2 CMK functionality can be expressed
in terms of TPM 2.0 policies, and combined this with the previous results so that
migration of all key types of TPM 1.2 are covered. Finally the different proposed
solutions were implemented and tested using TPM emulators.

Acknowledgments.

The authors would like to thank the anonymous reviewers for their helpful and
valuable comments.

References

[Bit] Microsoft. BitLocker. https://docs.microsoft.com/en-
us/windows/security/information-
protection/bitlocker/bitlocker-overview. Accessed:
2019-05-20.

[Che+14] C. Chen et al. “cTPM: A Cloud TPM for Cross-Device Trusted
Applications”. In: 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014.

https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview

100 Paper II: Enabling Key Migration Between Non-Compatible TPM Versions

[Hel+15]

[IBMa]

[Infa]

[Infb]

[Micb]

[Micl4]

[NEA14]

[SGR09]

[Sin+14]

[Sri+12]

[TPM11]

M. Hell et al. “Using TPM Secure Storage in Trusted High
Availability Systems”. In: Trusted Systems: 6th International
Conference, INTRUST 2014, Beijing, China. Springer
International Publishing, 2015, pp. 243-258.

IBM. IBMs Software Trusted Platform Module.
http://ibmswtpm.sourceforge.net/.

Infineon. Infineon Advances Trusted Computing with New
OPTIGA™ TPM Family: Security Chips Serve Industrial/Embedded
Environments and Support Next Generation TPM 2.0 Firmware.
http://www.infineon.com/cms/en/about-
infineon/press/press-releases/2013/INFCCS201309-
062.html.

Infineon. Infineon Expands its Trusted Computing Expertise to
Mobile Devices: OPTIGA™ TPM 2.0 Chips Secure Microsoft Surface
Pro 3 Tablet. http://www.infineon.com/cms/en/about-
infineon/press/press-releases/2015/INFCCS201502-
026.html.

Microsoft. 78S.MSR vl.1 TPM2 Simulator. http:
//research.microsoft.com/en-US/downloads/35116857-
€544-4003-8e7b-584182dc6833/default. aspx.

Microsoft. Understanding and Evaluating Virtual Smart Cards.
https://www.microsoft.com/en-
us/download/details.aspx?id=29076. July 2014.

T. Nyman,]J.-E. Ekberg, and N. Asokan. “Citizen Electronic
Identities Using TPM 2.0”. In: Proceedings of the 4th International
Workshop on Trustworthy Embedded Devices. TrustED ’14.
Scottsdale, Arizona, USA: ACM, 2014, pp. 37-48.

N. Santos, K. P. Gummadi, and R. Rodrigues. “Towards trusted
cloud computing”. In: Proceedings of the 2009 conference on Hot
topics in cloud computing. USENIX Association. 2009.

A. Sinha et al. “Continuous Tamper-Proof Logging Using TPM
2.0”. In: Trust and Trustworthy Computing: 7th International
Conference, TRUST 2014. Springer International Publishing, 2014,
pp- 19-36.

A. Srivastava et al. “Trusted VM Snapshots in Untrusted Cloud
Infrastructures”. In: Research in Attacks, Intrusions, and Defenses:
15th International Symposium, RAID 2012. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 1-21.

Trusted Computing Group. Trusted Computing Platform Alliance
(TCPA) Main Specification Version 1.1b. Feb. 2002.

http://ibmswtpm.sourceforge.net/
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2013/INFCCS201309-062.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2013/INFCCS201309-062.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2013/INFCCS201309-062.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2015/INFCCS201502-026.html
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
http://research.microsoft.com/en-US/downloads/35116857-e544-4003-8e7b-584182dc6833/default.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=29076
https://www.microsoft.com/en-us/download/details.aspx?id=29076

References 101

[TPM12] Trusted Computing Group. 7PM Main, Part 1-3, Specification 1.2,
Revision 116. Mar. 2011.

[TPM20b] Trusted Computing Group. Trusted Platform Module Library
Specification, Family "2.0”, Level 00, Revision 01.16. Oct. 2014.

[Tru05] Trusted Computing Group. Interoperability Specification for
Backup and Migration Services, Specification Version: 1.0 Final,
Revision 1.0. June 2005.

Trust Anchors in
Software Defined Networks

Abstract

Advances in software virtualization and network processing lead to increasing net-
work softwarization. Software network elements running on commodity plat-
forms replace or complement hardware components in cloud and mobile network
infrastructure. However, such commodity platforms have a large attack surface
and often lack granular control and tight integration of the underlying hardware
and software stack. Often, software network elements are either themselves vul-
nerable to software attacks or can be compromised through the bloated trusted
computing base. To address this, we protect the core security assets of network
elements — authentication credentials and cryptographic context — by provision-
ing them to and maintaining them exclusively in isolated execution environments.
We complement this with a secure and scalable mechanism to enroll network el-
ements into software defined networks. Our evaluation results show a negligible
impact on run-time performance and only a moderate performance impact at the
deployment stage.

1 Introduction

Software Defined Networking (SDN) is a widely used approach to operate net-
work infrastructure in virtualized environments. Separation of forwarding and
control logic, a core idea of this model, is often realized by software network
elements in a virtualized network infrastructure deployed on commodity hard-

Nicolae Paladi, Linus Karlsson, and Khalid Elbashir. “Trust Anchors in Software Defined
Networks”. In 23rd European Symposium on Research in Computer Security, ESORICS 2018,
Barcelona, Spain. LNCS Vol. 11009, pp. 485-504, Springer.

—
Q
Q.
©
[a

104 Paper III: Trust Anchors in Software Defined Networks

ware. However, by departing from hardware network elements with tightly couped
software and hardware often provided by the same vendor [Grol3], SDN broke
previous assumptions, outdated best-practices and introduced new vulnerabili-
ties [Pall5; Pall7]. Scott-Hayward et al. outlined a series of attack vectors that
can lead to unauthorized access, data leakage or modification, malicious applica-
tions on the network, configuration issues, and a wider collection of system-level
security vulnerabilities [SNS15]. This concern applies to both the data plane and
the application plane in SDN deployments. On the data plane, related litera-
ture describes both potential attacks on SDN in case of a virtual switch compro-
mise [AAS14], partly demonstrated in [Thi+17]. Malicious applications deployed
on the SDN infrastructure are a particular concern in virtualized environments.
They affect network security both directly (by intercepting or modifying traffic),
or indirectly through horizontal attacks aimed to leak authentication credentials
and encryption keys [Tell6].

Earlier research addressed SDN security through additional services [Por+12;
Shi+13; Hu+14], formal verification [Bal+14] and isolated execution using In-
tel Software Guard Extensions (SGX) [Shi+16; PG16; Kim+17; PK17], and most
popular network element implementation support communication over transport
layer security (TLS) [RFC5246]. Despite these efforts, the confidentiality and in-
tegrity of authentication credentials of network elements in SDN remain unad-
dressed. In particular, the existing approaches to provision authentication creden-
tials to network elements in SDN are either plain insecure or both insecure and
unscalable, requiring manual steps' [Ope]. Moreover, credentials provisioned to
network elements in virtualized environments are often stored in plaintext on the
file system. Adversaries exploiting vulnerabilities in process and virtualization iso-
lation can access authentication credentials to perform network attacks or imper-
sonate network elements. In this paper, we address two complementary questions:
(1) How can authentication credentials be securely provisioned to software network el-
ements in SDN deployments? and (2) How can the TLS context of virtual switches be
protected on compromised hosts?

1.1 Contributions

In this work, we present the following contributions:

* A secure, practical, and scalable mechanism to provision authentication cre-
dentials and bootstrap communication between software network elements.

e TLSonSGX2, a library allowing to maintain authentication credentials and
the TLS context exclusively in isolated execution environments.

"Tndeed, the Open vSwitch manual contains phrases as “Write the fingerprint down on a slip of
paper and copy sc-req.pem to the machine that contains the PKI structure”
ZSource code available: https://github.com/TLSonSGX/TLSonSGX

https://github.com/TLSonSGX/TLSonSGX

2 System and Threat Model 105

* A novel approach to restricting the availability of authentication credentials
for SDN components to hosts with an attested trusted computing base.

* A first thorough analysis of the performance trade-offs of deploying com-
ponents of network elements in SGX enclaves.

1.2 Structure

The remainder of this paper is structured as follows. We present the system model
and threat model in §2. Next, we describe the proposed solution in §3 and its
implementation in §4. We evaluate the approach in §5, discuss the related work
in §6, outline limitations and future work in §7 and conclude in §8.

2 System and Threat Model

We consider an SDN infrastructure deployed on commodity platforms in a dis-
tributed system, such as in a cloud platform or a mobile communications network.
The infrastructure is managed by the administrators of a network operator. Physical
access to the platforms is restricted and auditable.

System model Administrators use orchestrators to manage network infrastruc-
ture, software components and network services [Grol3]. They deploy network
elements on the data plane, control plane and application plane. The dara plane
consists of hardware or software switches (e.g. Open vSwitch [Pfa+15]) and com-
munication links between them. The control plane consists of a logically central-
ized network controller (e.g. ONOS [Ber+14], Floodlight [Iza]). The network con-
troller manages software switches through protocols such as OpenFlow [McK+08]
(to add or remove flows) or OVSDB [RFC7047] (to create ports and tunnels); it
manages hardware switches through OpenFlow (if supported) or other interfaces,
such as NETCONF [RFC6241]. The application plane comprises network func-
tions that implement services such as traffic engineering, monitoring, or caching. A
Virtual Network Function (VNF) is a virtualisation of a network function [Grol3].
Orchestrators deploy VNFs upon request from the network controller or a tenant.
The network controller configures flows and steers traffic to the network functions.

Network elements on the data-, control-, and application planes communi-
cate over two application programming interfaces (APIs). The controller com-
municates with data plane elements over the southbound API, commonly Open-
flow [McK+08; She+10; Bif+16] and with application plane elements over the
northbound API.

At deployment time, the orchestrator provisions TLS certificates to network
elements during the enrollment process. Furthermore, to protect the data within
the SDN deployment, the network controller enforces communication over TLS
with mutual authentication on both southbound and northbound APIs.

106 Paper III: Trust Anchors in Software Defined Networks

Threat model ~ Similar to earlier work on SDN security threats [KRV13; Pall5],
we assume physical security of the platforms underlying the SDN infrastructure
and correct implementation of cryptographic algorithms and communication se-
curity protocols, such as TLS [RFC5246]. The adversary has the capabilities of a
system administrator with remote access to commodity platforms in the SDN in-
frastructure. The adversary can intercept, drop and modify packets on the south-
bound and northbound interfaces. Furthermore, the adversary can run arbitrary
network elements in the SDN deployment and elsewhere [Grol3]. The adversary
can read the memory of the commodity platforms, exploit vulnerabilities in net-
work elements on the data- and application planes, and circumvent virtualization

isolation [AAS14].

3 Solution Space

We next present the approach for provisioning and protecting authentication cre-
dentials on the data and application planes of SDN deployments. We first intro-
duce three building blocks to create trust anchors in SDN deployments: Software
Guard Extensions (SGX), Trusted Platform Module (TPM) and Integrity Mea-
surement Architecture (IMA).

3.1 Trust Anchors

We use SGX enclaves [Ana+13; McK+13; XSL16; McK+16] to create trusted exe-
cution environments (TEEs) during operating system execution. We use the TEEs
to store authentication credentials and execute cryptographic operations for net-
work elements. SGX enclaves rely on a trusted computing base (TCB) of code and
data loaded at enclave creation time, processor firmware and processor hardware.
Program execution within an enclave is transparent to the underlying operating
system and other mutually distrusting enclaves on the platform. Enclaves oper-
ate in a dedicated memory area called the Enclave Page Cache, a range of DRAM
that cannot be accessed by system software or peripherals [McK+13; Intl7]. The
CPU firmware and hardware are the root of trust of an enclave; it prevents ac-
cess to the enclave’s memory by the operating system and other enclaves. Remote
attestation [Cok+11] allows an enclave to provide integrity guarantees of its con-
tents [Ana+13].

We use TPMs to store platform integrity measurements collected during boot,
and attest the integrity of platforms hosting the SDN infrastructure. A TPM is a
discrete component on the platform motherboard and its state is distinct from the
state of the platform. TPMs provide secure non-volatile storage, cryptographic
key generation and use, sealed storage and support (remote) attestation [TPM12].
TPMs assume platform integrity by identifying and reporting the platform state
that comprises the hardware and software components [NEA14]. In this context,
trust is based on the conjecture that a certain behaviour can be expected based on

3 Solution Space 107

the reported platform state [Pall7]. TPMs can prove the association between a
cryptographically verifiable identity and the host platform [TPM12; TPM20b].

We use Linux IMA to measure the integrity of the TCB. Linux IMA measures
a predefined set of files on the system by hashing their contents and storing the
values in a measurement list; it can be configured to detect modifications of files at
runtime. To guarantee the integrity of the measurement list, its trust can be rooted
in the TPM. The system’s trustworthiness can be assessed by a remote appraiser by
comparing the measurement list to an expected configuration [Cok+11]. We utilize
IMA to collect measurements of the network elements on the platform. During
the remote attestation of the platform, we use the measurement list to verify the
integrity - and implicitly the trustworthiness - of network elements.

3.2 Data Plane

At cloud platform deployment time, an orchestrator deploys and runs virtual
switches on the underlying compute resources. To enable network connectivity,
the orchestrator instructs virtual switches to add (or delete) ports whenever virtu-
alized execution environments are instantiated or torn down.

For a secure deployment, the administrator must ensure both a secure instal-
lation of hardware and software, as well as provision the correct initial configura-
tion of the virtual switch instances in the cloud infrastructure. In turn, secure
generation of keys and provisioning of certificates is a precondition to ensuring
security of the initial deployment configuration. Furthermore, ensuring the in-
tegrity of virtual switch binaries and configurations is a precondition for ensuring
the run-time security of the deployed instances.

We address this with a new library, TLSonSGX, that enables virtual switches
to use a cryptographic library running in a TEE (see Figure 1). TLSonSGX pro-
vides an abstraction layer and a wrapper around the cryptographic library deployed
in a TEE, allowing to easily substitute the implementation depending on perfor-
mance, functionality and licensing aspects. Following this approach, TLS sessions
originate and terminate within the TEE and the generated keys and certificates
are confined to the TEE, ensuring the confidentiality and integrity of core assets,
such as generated keys, certificates and TLS context, even in the event of a host
compromise. This, in combination with an infrastructure monitoring system and
a file integrity subsystem (such as Linux IMA), prevents the adversary from im-
personating data plane network elements [Thi+17] and from enrolling additional
network elements into the infrastructure.

Secure provisioning of authentication certificates is challenging, especially at
scale, and depends on the capability to establish a secure communication channel
between the certificate authority (CA) and the target component. Several vendor-
specific solutions exist [McK+13; Jai+16]. To support the deployment, we intro-
duced a CA with extended functionality to sign certificates for the virtual switches
and the SDN controller. CA certificates are provisioned to the virtual switches

108 Paper III: Trust Anchors in Software Defined Networks

SSL Wrapper Host B
virtual switch SGX Enclave SDN Controller

Host C

mbed TLS
SGX trusted librar - ,
TLSonSGX Certificate Authority

Figure 1: TLSonSGX System Design

and the SDN controller in the deployment and are subsequently used for mutual
authentication. Beyond secure certificate provisioning, the extended CA verifies
the integrity of the virtual switches before signing their certificates. We leverage
the remote attestation capability provided by the TPM to verify the TCB integrity
on the host platform. The TPM is in this protocol the root of trust that stores and
provides a signed quote of the integrity measurements of the virtual switch binary
and ancillary libraries, collected by IMA.

3.3 Application Plane

Network elements on the application layer, such as VNFs, must be authenticated
and integrity verified prior to enrollment into the SDN infrastructure. As the
controller requires mutual authentication with all its clients, this ensures that only
trustworthy VINFs can communicate with the controller. Similar to the approach
above, the TPM is used as a root of trust.

We use SGX enclaves to ensure integrity and confidentiality of the authen-
tication credentials for enrolled VNFs. Storing the credentials in SGX enclaves
reduces the attack surface to the enclave TCB and offers an additional layer of
protection even in the case of a breach of the platform TCB. We discuss the limi-
tations of this approach in Section 6.3.

We next provide an overview of the proposed solution (see Figure 2). The ex-
tended certificate authority (CA) introduced above determines whether or not a
VNF configuration is valid, by matching against a list of known good configura-
tions. Ifa configuration is valid, the CA can also sign certificates. This component
can be collocated with the network elements in the deployment, or be deployed
and operated by a third party. We assume that the CA root certificate is provided
to the SDN controller during initial setup.

At the start of the enrollment protocol, the orchestrator launches an execution
environment (such as a bare-metal host, virtual machine or container) with TPM
and IMA support. Together, these two mechanisms record both the software and
hardware configuration in a measurement log, including the TCB of the VNFs.
The measurement log is anchored in the TPM located of the host, allowing the
use of the TPM’s remote attestation functionality. Note that both a native and a
virtualized TPM can be used in this case.

4 Implementation 109

container host] . container
applicati

‘ attestation agent
o o
| TPM [+—— IMA | H

Figure 2: Enrollment steps in the application layer

o X1

Similar to [Zhu+17] we use an attestation agent running on the container host.
This agent proxies the communication between the container and the TPM and
IMA. We propose a solution where the attestation agent is only accessible from
the container running on the same host. This prevents direct communication
between the attestation agent and the CA. To prevent cuckoo attacks [Par08],
the communication passes through the container application and the enclave and
ensures that the enclave is running on the same host.

The enrollment phase consists of the following steps (see Figure 2): Upon ini-
tialization of the container and application, the latter requests a nonce from the
CA ©,0. Next, the application requests from the attestation agent a quote for
the given nonce, together with the IMA measurement list @). The agent commu-
nicates with the TPM and the IMA to retrieve the data e, and returns the data to
the application @). The enclave generates a new private key and a certificate sign-
ing request (CSR) and stores it in the SGX enclave @. The application sends the
quote, measurement list, and the CSR to the CA e, that verifies the message 0O.
As the measurement list covers both the host system and the container TCB, the
integrity of the host and target containers can be validated. If the measurement
values match known good configurations, the CA signs the CSR and returns the
signed certificate to the enclave @ At this point, the VNF can establish a secure
TLS connection with the SDN controller. The proposed solution ensures that
only trustworthy VNFs receive valid certificates and can be enrolled in the SDN
infrastructure.

4 Implementation

To facilitate adoption and obtain reproducible results, we implemented the pro-
posed solution using common open-source libraries and execution isolation fea-
tures available on commodity platforms. We used Open vSwitch (OvS), a popu-
lar software switch implementation and the Ryu and Floodlight SDN controllers,
mainly due to their popularity and simple configuration. In the remainder of this
section, we first describe the implementation of TLSonSGX on the data plane.
Next, we describe the security mechanisms deployed on the application plane.

110 Paper III: Trust Anchors in Software Defined Networks

4.1 TLSonSGX

The SGX programming model requires that applications deployed in SGX en-
claves have an external component that can be called by other processes running
on the operating system, and that in turn maps such calls to software in the en-
clave. This external component is not part of the enclave and its integrity cannot
be attested using the SGX integrity attestation mechanisms, thus is is considered
untrusted; in contrast, the code running in the enclave is considered #rusted once
its integrity has been attested. Following the SGX programming model, the un-
trusted code portion of the TLSonSGX library is a wrapper that maps OpenSSL
external methods (used by Open vSwitch) internally into enclave calls (ECALLs).
The trusted portion of the code, contained within the SGX enclave, implements
the ECALLs by utilizing the SGX trusted TLS library. Support for TLS libraries
in SGX varies and evolves continuously; we have chosen the mbed TLS [mbe] li-
brary considering its sufficient support for SGX enclaves.

Considering that authentication keys and certificates are confined to the en-
clave, we modified OvS to use only a limited set of OpenSSL external methods
that we subsequently implemented in TLSonSGX. The OpenSSL library imple-
ments three data structures: SSL_METHOD, SSL_CTX, and SSL.

These data structures all contain crucial information for TLS connection se-
curity, therefore we create and confine them within the enclave. The objects are
passed by the OvS instance via an unmodified API using the external methods we
implemented. They are created, confined, and handled inside the enclave dur-
ing the operation of the virtual switch, and hence discarded and not passed to
ECALLs. There is no one-to-one mapping in mbed TLS for these three struc-
tures, hence we redefine these structures using mbed TLS primitives (specifically
the mbedtls_ssl_config and mbedtls_ssl_context data structures).

The code in stream-ssl.c implements the interface between OvS and the
OpenSSL library. We extended the OvS configuration script and stream-ssl.c
with a new compilation flag, SGX. If the SGX flag is set at compilation time,
stream-ssl.c will use the TLSonSGX static library instead of the OpenSSL
library. Moreover, the sections of stream-ssl.c that load keys and certificates
from the file system become redundant and are omitted.

4.2 Application Plane

On the application plane, the solution consists of three major components: the
network application, the attestation agent, and the certificate authority.

The attestation agent is a service running on the container host, setup to listen
to connections from containers running on the same host, as those are the only
containers able to request a quote from this host. The attestation agent can return
both a copy of the measurement list, and a quote from the TPM. The quotes are
made over the appropriate PCR registers to capture the current configuration, to-
gether with a nonce to prevent replay attacks. Interfacing with the TPM is imple-

5 Evaluation 111

mented using the TrouSerS TSS library [IBMb] on Linux. Using an attestation
agent reduced the code base of the containers, since they do not have to interface
directly with a TPM or Linux IMA.

Next, the CA fulfills two goals. First, it validates the integrity of the compo-
nents by validating the quote, and compares the configuration and measurement
list to known good values. Second, if the two values match, the CA signs the ap-
plications CSR. We implemented this using the OpenSSL C library to create the
signature with a pre-configured root certificate. This root certificate is distributed
to the SDN controller, allowing it to validate the certificate chain.

The final component is the container application. Using mbed TLS [mbe],
we implemented an application that supports the attestation sequence described
earlier, and communicates with both the attestation agent and the CA. Once the
attestation sequence is finished, the application can connect to an SDN controller
using the credentials generated and confined within the enclave.

5 FEvaluation
5.1 Testbed

We evaluated the solution on the testbed described below (see Figure 3).

Hardware The host platform is a Lenovo Thinkpad T460s with a dual-core Intel
Core™ i7-6600U CPU clocked at 2.60GHz with SGX support. VM was created
with 1 virtual CPU, and VM, with 2 virtual CPUs; both VMs had 4 GB RAM,
30 GB of storage, and used virtio as vINIC. We used Ubuntu 16.04.1 (with OvS
and SGX drivers and SDKs) on both the host and VMs. To enable the use of SGX
within the VM environment, we created VM, using patched versions of QEMU
and KVM provided by the SGX project® and Intel SGX SDK, v1.8.

We enabled hyper-threading on the host platform, yielding 4 logical CPUs.
We pinned VM, to CPU 2 and VM, to CPUs 1 and 3 (same core). In VM,
we pinned the virtual switch to CPU 1 and the traffic generator/sink and echo
server to CPU 2, in order to reduce inter-core communication overhead [Sek+12].
However, due to the limited number of cores on the host (2 cores) we were unable
to implement strict CPU isolation by dedicating entire cores. In §5.3 we discuss
the potential implications of this.

Software We used OvS release 2.6.0%. In VM, we deployed OvS binaries com-
piled and linked with our TLSonSGX (as explained in §3.2). We created two

network namespaces, each with a port connected to the OvS instance.

3SGX Virtualization,
https://01.org/intel-software-guard-extensions/sgx-virtualization
4Commit 4b27db644a8c8e8d264072913cbdfa7edb78¢788

https://01.org/intel-software-guard-extensions/sgx-virtualization

112 Paper III: Trust Anchors in Software Defined Networks

Virtual Machine 1 Virtual Machine 2
(QEMU & KVM) (QEMU & KVM with SGX support)
8 5
Netwark Network Traffic < —
Certificate Namespace NameSpace Generator/ Open
Authority Sink q :
Network > vSwitch = P> Network
MDdIﬂEd Namespace 1 Namespace 2
Open vSwitch 2] s 7|e
Ubuntu 16.04.1 | ynig: Ubuntu 16.04.1 [ynig. UDP Eche Requse
l ‘ UDP Echo Reply,
—
‘ Linux Bridge ‘

Physical Machine with SGX support (Ubuntu 16.04.1)

Figure 4: UDP Packet Path

Figure 3: Testbed architecture

The CA uses OpenSSL 1.1.0d for TLS communication with OvS and to sign
the OvS and the SDN controller certificates. We used OpenSSL, rather than TL-
SonSGX for the CA implementation for two reasons: (1) the CA implementation
is trusted according to the threat model; and (2) to ensure interoperability between
TLSonSGX (on the client side) and OpenSSL (on the server side).

We chose the Ryu SDN open-source controller as it supports TLS commu-
nication with OpenFlow switches®. It is written in Python and is widely used in

research [Arb+16] and in commercial productsG.

5.2 Evaluation Targets

SDN Controller Program In the SDN model, the virtual switch forwards the
first packet in a new flow to the SDN controller. The controller replies with a flow
table update, the action to be executed by the switch to handle the packet, and the
packet itself. The virtual switch handles subsequent packets in the flow according
to the newly installed rule in the flow table.

To exercise the communication between the SDN controller and the virtual
switch and to capture latency measurements, we designed the SDN controller as
a learning L2 switch, with a MAC address to port number mapping table. To
collect measurements of the controller-induced latency, the SDN controller sends
no flow updates to the virtual switch (otherwise we would get one measurement
per new destination). As a result, the virtual switch sends all the packets in the
flow to the SDN controller and the controller returns the packets to the virtual
switch along with the action to send the packet through the corresponding port.

Performance Measurements We are primarily interested in the latency and the
time required to generate key pairs and to obtain a signed certificate from the CA.
When it comes to latency, the choice of traffic generators was limited to those

>See Ryu 4.9 Documentation, https://ryu.readthedocs.io/en/latest/tls.html
®See SmartSDN Controller, https://osrg.github.io/ryu-book/

https://ryu.readthedocs.io/en/latest/tls.html
https://osrg.github.io/ryu-book/

5 Evaluation 113

Table 1: Keys and certificate gener-

ation time. 1000 measure- o
Table 2: Packet rate vs. Average CPU utilization

ments.
Mean 0.344 seconds Packet Rate | OpenSSL | TLSonSGX
Variance 0.0488 500 pps 25% 61%
Ist Quartile | 0.186 seconds 1000 pps 40% 78%
Median 0.276 seconds 2000 pps 49% 96%
3rd Quartile | 0.434 seconds

that can provide latency measurements. Moreover, such measurements require
that clocks of both traffic source and sink are synchronized (or co-exist in the
same host). Having investigated several traffic generators (qperf”’, pktgen [Ols05],
moongen [Emm+15], and Click [Mor+00]), we chose Click due to its flexibility
and versatility.

We implemented a traffic generator and sink using the Click Modular Router.
This allows us to measure round trip latency for UDP packets of varying sizes, at
a rate of 500 Packets Per Second (pps) using the Click element
StoreUDPTimeSeqRecord. Increasing the rate beyond that results in much higher
latency variance (see §5.3).

We deployed the traffic generator and sink in network namespace (7) and a
UDP echo server in network namespace (7). The echo server echoes the received
UDP packet back to the traffic generator and sink. The the two network names-
paces communicate through Open vSwitch, as illustrated in Figure 4. To bench-
mark the performance, we replicated the measurements in a clone of VM3, using
a vanilla QEMU and KVM, with a default Open vSwitch implementation that
uses OpenSSL.

5.3 TLSonSGX Performance Fvaluation

Keys and Certificate Generation Time This measurement concerns the time
from SSL_library_init invocation in the Open vSwitch until the key pairs and
signed certificate are loaded to the enclave’s memory. See measurement results in
Table 1. There is no corresponding measurement in a vanilla Open vSwitch, since
keys and certificates are handled manually [Ope]. However, as this operation is
only executed once when ovs-vswitchd starts, the measurements show that there
is little de facto overhead introduced by the implementation.

Packet Round Trip Latency

In this section we discuss and analyze the packet round trip latency. The measure-
ments do not include the key generation time; likewise, the time to establish a

’See gperf man page

114 Paper III: Trust Anchors in Software Defined Networks

TLS session is not included, as it must already be established before packets can
flow. The TLS session remains active unless one of the two ends (Open vSwitch
or SDN controller) terminates the session.

Packet Size 'The IP packet size received by the Open vSwitch from the traffic
generator is bounded by the Maximum Transmission Unit (MTU) of the network
namespace port connected to the Open vSwitch (1500 bytes in our tests). Open
vSwitch encapsulates the received packet in an OpenFlow Packet In message,
adding an 18 bytes header [Opel5], that is in return encapsulated in a TLS record
sent from the Open vSwitch to the SDN controller. If the packet sent by the
traffic generator is larger than the MTU, then it is fragmented and Open vSwitch
handles it as two separate Packet In messages to the SDN controller.

The TLS record adds a 5-byte header. Depending on the cipher suite negoti-
ated between the server and the client, a padding field (up to 15 bytes) is added,
and the TLS record is appended with a Message Authentication Code (MAC) com-
puted over the data. In the handshake messages exchanged between Open vSwitch
and the SDN controller in our tests, the negotiated cipher suite was ECDHE-RSA-
AES256-SHA, which provides perfect forward secrecy through the use of an Elliptic
Curve Diflie-Hellman key exchange [RFC4492], while the bulk encryption use
256-bit AES in CBC-mode with SHA-1 for MAC [RFC3268].

We measure the latency for increasing packet sizes ranging from 64 bytes up
to 1408 bytes (in increments of 64 bytes), including the Ethernet and IP headers
(minus the Cyclic Redundancy Check). The upper limit is set to avoid subsequent
fragmentation between the Open vSwitch and the SDN controller.

Packet Rate Selection and CPU Utilization We excluded outliers with a round
trip latency over 2.5 milliseconds from the captured data: 5237 outliers when test-
ing OpenSSL and 11622 outliers when testing TLSonSGX, out of 220000 samples
for each implementation. We investigated the CPU utilization to identify the
cause of the outliers and the order-of-magnitude difference in the outlier numbers
between the two implementations. In both implementations, inside the VM, the
first vCPU reaches 100% utilization due to the Click packet generation process
pinned to it, even at rates lower than 500 pps (i.e., 50, 100, 200 pps). However,
the second vCPU, where ovs-vswitchd process is pinned, has a higher average
CPU utilization when TLSonSGX is used compared to OpenSSL (see Table 2). In-
creasing the rate beyond 500 pps leads to increasing the second vCPU’s utilization
and average latency. Thus, we chose 500 pps as a suitable and optimal maximum
rate for further measurements and analysis. Using SGX causes increased CPU uti-
lization due to the overhead of transitioning to and from the memory enclave.

Latency and Packet Size The packet round trip latency measurements are plotted
in a boxplot comparing TLSonSGX with the vanilla Open vSwitch with OpenSSL

5 Evaluation 115

2.25-

N
°
S

o
a

o
S

Latency in Milliseconds

1.25-

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 1088 1152 1216 1280 1344 1408
Packet Size in Bytes

OpenSSL: TLSonSGX:
TLS Library E Latency = 0.000028*Packet Size + 1.371, R‘=0.0691- Latency = 0.000182*Packet Size + 1.703, R?=0.948

Figure 5: UDP Packet Round Trip Latency vs. Packet Size

when forwarding UDP packets of a range of sizes (outliers were excluded, as stated
above). Figure 5 shows a plot of latency versus packet size.

Each box represents the data between first and third quartile, the thick line in
the box represents the median. The upper whisker is the minimum value between
the data maximum and 3rd Quartile + 1.5*IQR, where IQR is the interquartile
range. The lower whisker is the maximum value between the data minimum and
Ist Quartile - 1.5*IQR [FHI89].

A linear regression analysis of means shows that at zero byte TLSonSGX adds
an overhead of 0.33 ms compared to OpenSSL. In implementations the latency
increases linearly with packet size; we estimate this increase to 28 nanoseconds per
byte for OpenSSL, and 182 nanoseconds per byte for TLSonSGX. While the lin-
ear increase is consistent with our expectations (larger packets require more pro-
cessing time), the increase per byte is higher in TLSonSGX than in OpenSSL (154
nanoseconds per byte). This, and the extra cost of 0.33 ms at zero byte are also
expected due to the transition overhead to and from the memory enclave.

Once a packet is received at an Open vSwitch port from the network name
space, ovs-vswitchd triggers ecall_ssl_write to encrypt and send the packet
to the SDN controller, while checking the SSL state (ecall_ssl_get_state) be-
fore and after the write ECALL. Since ovs-vswitchd uses non-blocking sockets,
ovs-vswitchd keeps reading and returning from the socket (ecall_ssl_read),
while comparing the SSL state before and after the read

116 Paper III: Trust Anchors in Software Defined Networks

Table 3: Analysis of packet latency (all measurements are in milliseconds**)

ecall_ssl_ Total

Size (B) TLSonSGX OpenSSL Diff read write get_state* get_error* enclave

access

64 1.6500 1.2682 0.3817 0.0047 0.0646 0.0047 0.0043 0.2966
128 1.6667 1.2722 0.3944 0.0048 0.0676 0.0047 0.0043 0.3040
256 1.6820 1.2844 0.3976 0.0049 0.0725 0.0047 0.0043 0.3146
512 1.6852 1.2955 0.3897 0.0049 0.0828 0.0047 0.0043 0.3350
1024 1.6963 1.3145 0.3818 0.0049 0.1022 0.0047 0.0043 0.3740
* ecall_ssl_get_state and ecall_ssl_get_error are independent of packet size.
** Measurements captured in a different iteration than in Figure 5.

(ecall_ssl_get_state). If a negative value is returned (WANT_READ) from
ecall_ssl_read then it triggers (ecall_ssl_get_error) to retrieve the error
code which indicates that the read call must be repeated and accordingly continue
the loop. If a positive value is returned, there is a response from the controller.
The controller will respond with two packets: (1) the original packet itself; (2) the
action needed by the switch to forward the packet to the second network name
space. The same flow will run during the return trip from the second network
name space to the first one.

To analyze and break down the time difference between OpenSSL and TL-
SonSGX, we traced the ECALLs indirectly called by ovs-vswitchd during the
packet’s round trip. We measured the time consumed for each ECALL and re-
peated the measurement 10000 times per packet size. Table 3 lists the mean values
for each of the four different ECALLs. The last column in the table shows the sum
of all ECALLS times per packet round trip.

We noticed that the duration of ecall_ssl_write is longer (and increases
with packet size) than that of other ECALLs. This is because ecall_ssl_write
is the only ECALL that writes from a buffer with a pointer outside the enclave
(unprotected memory) to the enclave memory. All other ECALLSs do the opposite.
According to the manual, ECALLs that pass an external pointer into the enclave
are slow, since a buffer is allocated inside the enclave memory®. Before copying
the contents of the external buffer into the enclave memory, the content and the
size of the buffer referenced by the external pointer are verified for every call to
prevent overwriting enclave code or data.

Recall from the system model (consistent with a typical SDN deployment)
that only the first packet in the flow is sent to the SDN controller. As a result,
crafting a small enough first packet (64 bytes) allows to optimize the latency and
reduce the time to add the flow rule in the Open vSwitch flow table.

8Pointer Handling, Intel Software Guard Extensions SDK, https://software.intel.com/
en-us/node/708975

https://software.intel.com/en-us/node/708975
https://software.intel.com/en-us/node/708975

6 Related Work 117

5.4 Application Plane Evaluation

In the application plane, we are mostly interested in performance measurement
regarding the attestation time. Every time a container is launched, both the con-
tainer itself and the host it is running on must be attested. In this section, we focus
on measuring the attestation time for the proposed application plane design. There
are of course other relevant performance aspects, such as time required for the
actual TLS connection to the controller, but we refer to previous work for such
measurements [GP17].

Table 4: Attestation Time in Application Plane for various stages of the attestation se-
quence. Stages with execution time < 0.010 s removed.

Stage Mean Variance Median
TPM quote 0.332s 0.000159 0.335s
Key generation 0.326's 0.050746 0.266 s
CSR signing 0.011 s 0.000002 0.010s

Total attestation time 0.686s 0.050849 0.622 s

The benchmarks were made by repeatedly launching the application which
triggers the attestation. We ran 1000 tests, and calculated the mean and median
values of the total attestation time (see results in Table 4). As seen from the table,
the attestation time is well below one second in the average case. Breaking down
the execution time to various stages of the attestation, and presenting those with
an execution time of > 0.010 s, we see that the majority of the attestation time is
spent in two different stages: (1) waiting for the TPM chip to generate the quote,
and (2) generating the private key within the enclave. Stage (1) is implemented in
the TPM chip itself, while stage (2) depends on the size and type of key generated.
A 2048-bit RSA key was used for the measurements presented above. We also
note that our current implementation is not optimized, and it may be possible to
reduce the execution time even further.

6 Related Work

6.1 Isolating Network Elements

Protecting the sensitive code and data of network elements is a topic of active on-
going research. Jacquin proposed an architecture that used a hardware root of
trust to remotely attest the integrity of virtualization hosts in SDN infrastruc-
ture [JSDI15]. Furthermore, commodity TEEs were used in case studies on se-
curing network applications [Kim+15; Shi+16], implemented using OpenSGX,
an emulator of SGX [Jai+16]. TruSDN is a framework for bootstrapping trust

118 Paper III: Trust Anchors in Software Defined Networks

in an SDN infrastructure implemented using OpenSGX [PG16]. It supports se-
cure provisioning of switches in SGX enclaves, a secure communication channel
between switches and SDN controller, and secure communication between end-
points in the network using session keys that are generated per flow and used only
during the lifetime of the flow. Similarly, Trusted Click [CKW17] explores the fea-
sibility of performing network processing in SGX enclaves.

SCONE enables operators to protect confidentiality and integrity of compu-
tation in application containers against an adversary with root access to the con-
tainer host [Arn+16]. SCONE achieves this by deploying containers within SGX
enclaves and relies on a 1ibc library ported to the SGX environment to reduce
performance impact of context switches between SGX enclaves and the underly-
ing OS, at the cost of expanding the TCB.

Our solution addresses both confidentiality of long-term credentials and ses-
sion keys, as well as integrity of the network element platform. In particular, we
enable network elements on remotely attested hosts to protect their communi-
cation with the network controller using a TLS library and credentials in a local
SGX enclave. This allows us to protect core assets with insignificant performance
overhead and minimal changes to network element implementations. Porting en-
tire applications into SGX enclaves - as proposed in the related work above - ex-
pands the attack surface to both software vulnerabilities and side-channel attacks.
We avoid this by only porting to the enclaves a minimal TCB of the network ele-
ments. We reduce the TCB by only confining the TLSonSGX library, credentials,

and TLS session information to the enclave.

6.2 Enrolling Network Elements

According to [PG15], incomplete or incorrect network views are an attack vector
in SDN deployments. The Secure Network Bootstrapping Infrastructure (SNBI)
protocol [Opel7] bootstraps secure communication channels of network elements
and controllers and provisions the keys required for secure communication. To
enable connectivity to the network devices, SNBI assigns unique IPv6 addresses
(based on the unique device identifier) or and bootstraps devices with the required
keys. However, the SNBI protocol is not resistant against impersonation attacks on
network elements and fails to specify a protocol for software network elements with
similar security features. We address the shortcomings of SNBI by attesting the
integrity of the trusted computing base of the platforms hosting network elements
prior to provisioning authentication credentials; the credentials are stored in a
secure enclave and as described in 4.1, never leave the enclave.

6.3 TLS Implementations for SGX
There are several known TLS libraries ported to SGX enclaves. TaLoS [Aub+17]

terminates TLS communication inside the container enclave by providing a port

of LibreSSL library into SGX and thus maintaining OpenSSL API, including APIs

7 Limitations and Future Work 119

to set private keys and certificates from outside the enclave. In this paper, keys and
certificates are maintained inside the enclave and no APIs are exposed to manipu-
late them. Furthermore, TaLoS was not available at the time of writing.

Initially, mbed TLS was the only available port of a TLS library into SGX in
Linux [mbe]. Intel [Int] and wolfSSL [Wol] provided a port to Linux in May 2017
and June 2017 respectively. However, none of these three provided an unmodified
OpenSSL API that is exposed outside the enclave. Thus, none of the TLS libraries
for SGX enclaves expose the required functionality. We implemented TLSonSGX
to address the lack of usable implementations. TLSonSGX implements a wrapper
around mbed TLS Trusted SGX library that exposes the OpenSSL APIs (that are
needed for Open vSwitch TLS operations) outside the enclave.

Popular TLS libraries with support for execution in SGX enclaves (OpenSSL,
GnuTLS, mbed TLS, WolfSSL, LibreSSL) are vulnerable to Bleichenbacher at-
tacks [Ble98] and a modified version padding oracle attacks [Vau02] on branch
level, cache line level and page level [Xia+17]. Such attacks can be mitigated
by using the Diffie-Hellman (DH) key exchange instead of RSA-based key ex-
changes and Authenticated Encryption with Associated Data (AEAD) mode for en-
cryption [Xia+17]. TLSonSGX is compatible with the mitigation suggested in
[Xia+17] and can be configured to enforce DH key exchanges and AEAD encryp-
tion mode.

7 Limitations and Future Work

We implemented a prototype and tested it using one dual-core laptop and used
VMs with SGX support to host the virtual switches, the SDN controller, and net-
work namespaces (See in §5.1). While this sufficient to demonstrate the feasiblity
of TLSonSGX and compare it to OpenSSL, the platform choice limited possible
performance measurements. Dedicated multi-core platforms, or cloud resources,
with SGX support could be used to refine the performance measurements.

The current implementation supports only one virtual switch connecting mul-
tiple VMs per physical host, as only one SSL context is created and kept inside
the enclave. This can be improved by introducing support for multiple switches
per host by extending the library to support multiple SSL contexts. TLSonSGX
could also be extended to protect the flow table or OVS database content from
tampering by storing them in the enclave.

For keys and certificates to survive host reboots, the enclave could deploy seal-
ing mechanisms to seal the enclave, i.e. encrypt it, export it from the enclave, and
store it on the local hard disk. We did not prioritize this, as generating new keys
and obtaining a new certificate takes approximately 0.3 seconds (See §5.3).

120 Paper III: Trust Anchors in Software Defined Networks

8 Conclusion

Protecting network elements on the data and application planes is essential for the
security of SDN deployments and the network isolation between tenants. How-
ever, both state of art network elements and the underlying platforms are vulner-
able to software attacks, potentially exposing authentication credentials stored in
plaintext. To address this, we implement the TLSonSGX library that provides a
secure and scalable mechanism for network elements to generate keys and obtain
signed certificates, while keeping them secure within a memory enclave. TLSon-
SGX confines all the TLS connections to the SDN controller within the enclave
to ensure that keys, certificates, and session data remain inaccessible outside the
enclave. We complement TLSonSGX with additional mechanisms to asses the
network element trustworthyness and apply the approach on both data- and ap-
plication planes.

Our evaluation results show that TLSonSGX does not significantly impact
the time to generate credentials and only adds an insignificant overhead when
processing the first packet in each flow. TLSonSGX reduces the TLS configuration
overhead and improves the security of SDN deployments.

Acknowledgements.
This research was conducted within the 5G-ENSURE and COLA projects and re-

ceived funding from the European Union’s Horizon 2020 research and innovation
programme, under grant agreements No 671562 and 731574.

References

[AAS14] M. Antikainen, T. Aura, and M. Sireld. “Spook in Your Network:
Attacking an SDN with a Compromised OpenFlow Switch”. In:
Proc. 19th Nordic Conference on Secure IT Systems. NordSec "14.
Tromse, Norway: Springer, Oct. 2014, pp. 229-244.

[Ana+13] I. Anati et al. “Innovative technology for CPU based attestation
and sealing”. In: Proc. 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy. HASP ’13.
Tel-Aviv, Israel: ACM, June 2013, p. 10.

[Arb+16] R. K. Arbettu et al. “Security analysis of OpenDaylight, ONOS,
Rosemary and Ryu SDN controllers”. In: 2016 17th International
Telecommunications Network Strategy and Planning Symposium

(Networks). Sept. 2016, pp. 37-44.

[Arn+16] S. Arnautov et al. “SCONE: Secure Linux Containers with Intel
SGX”. In: Proc. 12th USENIX Conference on Operating Systems
Design and Implementation. OSDI’16. Savannah, GA, USA:
USENIX, Nov. 2016, pp. 689-703.

References

121

[Aub+17]

[Bal+14]

[Ber+14]

[Bif+16]

[Ble98]

[CKW17]

[Cok+11]

[Emm+15]

[FHI89]

[GP17]

[Grol3]

P-L. Aublin et al. 7aLoS: Secure and Transparent TLS Termination
inside SGX Enclaves. Tech. rep. 2017/5. Imperial College London,
Mar. 2017.

T. Ball et al. “VeriCon: Towards Verifying Controller Programs in
Software-defined Networks”. In: Proc. 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
PLDI "14. Edinburgh, United Kingdom: ACM, June 2014,

pp- 282-293.

P. Berde et al. “ONOS: Towards an Open, Distributed SDN OS”.
In: Proc. 3rd Workshop on Hot Topics in Software Defined
Networking. HotSDN ’14. Chicago, Illinois, USA: ACM, Aug.
2014, pp. 1-6.

R. Bifulco et al. “Improving SDN with InSPired Switches”. In:
Proc. Symposium on SDN Research. SOSR ’16. Santa Clara, CA,
USA: ACM, Mar. 2016, pp. 1-12.

D. Bleichenbacher. “Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1”. In: Proc. 18th
Annual International Cryptology Conference. CRYPTO’98.
Springer Berlin Heidelberg, Aug. 1998, pp. 1-12.

M. Coughlin, E. Keller, and E. Wustrow. “Trusted Click:
Overcoming Security Issues of NFV in the Cloud”. In: Proc. ACM
International Workshop on Security in Software Defined Networks &
Network Function Virtualization. SDN-NFVSec ’17. Scottsdale,
Arizona, USA: ACM, Mar. 2017, pp. 31-306.

G. Coker et al. “Principles of remote attestation”. In: International
Journal of Information Security 10.2 (Apr. 2011), pp. 63-81.

P. Emmerich et al. “Moongen: A scriptable high-speed packet
generator’. In: Proceedings of the 2015 Internet Measurement
Conference. IMC ’15. Tokyo, Japan: ACM, 2015, pp. 275-287.

M. Frigge, D. C. Hoaglin, and B. Iglewicz. “Some
Implementations of the Boxplot™. In: 7he American Statistician

43.1 (1989), pp. 50-54.

D. Girtler and N. Paladi. “Component integrity guarantees in
Software-Defined Networking infrastructure”. In: Proc. 2017 IEEE
Conf- Network Function Virtualization and Software Defined
Networks. NFV-SDN’17. Berlin, Germany, Nov. 2017,

pp- 292-296.

Group Specification. Network Functions Virtualisation (NFV),
Architectural Framework, v.1.1.1. Tech. rep. gs nfv 002. European
Telecommunications Standards Institute, Oct. 2013.

122

Paper III: Trust Anchors in Software Defined Networks

[Hu+14]

[(IBMb]

[Int]

[Intl7]

[Iza]

[Jai+16]

[JSD15]

[Kim+15]

[Kim+17]

[KRV13]

[mbe]

H. Hu et al. “FLOWGUARD: Building Robust Firewalls for
Software-defined Networks”. In: Proc. 3rd Workshop on Hot Topics
in Software Defined Networking. HotSDN ’14. Chicago, Illinois,
USA: ACM, Aug. 2014, pp. 97-102.

IBM Corp. TrouSerS: The open-source TCG Software Stack.
http://trousers.sourceforge.net/. Accessed 2018-04-13.

Intel Corp. Intel SGX SSL.
https://github.com/@1org/intel-sgx-ssl. Accessed
2017-07-20.

Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4.
Tech. rep. 325462-063US. Intel Inc., July 2017.

R. Izard. Floodlight REST API.
https://floodlight.atlassian.net/wiki/display/
floodlightcontroller/Floodlight+REST+API. Accessed:
2016-12-16.

P. Jain et al. “OpenSGX: An Open Platform for SGX Research”.
In: Proc. 2016 Network and Distributed System Security Symposium.
NDSS ’16. Internet Society, Feb. 2016.

L. Jacquin, A. L. Shaw, and C. Dalton. “Towards trusted
software-defined networks using a hardware-based Integrity
Measurement Architecture”. In: Proc. Ist IEEE Conf- Network
Softwarization. NetSoft'15. Apr. 2015, pp. 1-6.

S. Kim et al. “A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications”. In:
Proc. 14th ACM Workshop on Hot Topics in Networks.
HotNets-XIV. Philadelphia, PA, USA: ACM, Nov. 2015, 7:1-7:7.

S. Kim et al. “Enhancing Security and Privacy of Tor’s Ecosystem
by Using Trusted Execution Environments”. In: 14th USENIX
Symposium on Networked Systems Design and Implementation.
NSDI ’17. USENIX, 2017, pp. 145-161.

D. Kreutz, F Ramos, and P. Verissimo. “Towards secure and
dependable software-defined networks”. In: Proc. 2nd ACM
SIGCOMM workshop on Hot topics in software defined networking.
HotSDN ’13. ACM. Aug. 2013, pp. 55—60.

mbedTLS. 7LS for SGX: a port of mbedtls.
https://github.com/bl4ck5un/mbedtls-SGX. Accessed
2018-04-23.

http://trousers.sourceforge.net/
https://github.com/01org/intel-sgx-ssl
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+REST+API
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+REST+API
https://github.com/bl4ck5un/mbedtls-SGX

References

123

[McK+08]

[McK+13]

[McK+16]

[Mor+00]

[NEA14]

[Opel5]

[Opel7]

[Pall5]

[Pall7]

[Par08]

N. McKeown et al. “OpenFlow: Enabling Innovation in Campus
Networks”. In: ACM SIGCOMM Computer Communication
Review 38 (Apr. 2008), pp. 69-74.

F. McKeen et al. “Innovative Instructions and Software Model for
Isolated Execution”. In: Proc. 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. HASP
’13. Tel-Aviv, Israel: ACM, June 2013, 10:1-10:1.

F. McKeen et al. “Intel Software Guard Extensions (Intel SGX)
Support for Dynamic Memory Management Inside an Enclave”.
In: Proc. 2016 Hardware and Architectural Support for Security and
Privacy. HASP ’16. Seoul, Republic of Korea: ACM, June 2016,
10:1-10:9.

R. Morris et al. “The Click modular router”. In: ACM Trans.
Comput. Syst. 18.3 (Aug. 2000), pp. 263-297.

T. Nyman,].-E. Ekberg, and N. Asokan. “Citizen Electronic
Identities Using TPM 2.0”. In: Proceedings of the 4th International
Workshop on Trustworthy Embedded Devices. TrustED ’14.
Scottsdale, Arizona, USA: ACM, 2014, pp. 37-48.

R. Olsson. “Pkegen the linux packet generator”. In: Proc. Linux
Symposium. Ottawa, Canada, May 2005, pp. 11-24.

Open vSwitch. Open vSwitch Manual.
https://github.com/openvswitch/ovs/blob/
99¢c9baBec013b89138440b85ffc@61bb90377114/INSTALL.
SSL. Accessed 2019-09-15.

OpenFlow Switch Consortium. OpenFlow switch specification,
v.1.5.1. Tech. rep. ONF TS-025. Open Networking Foundation,
Mar. 2015.

OpenDaylight Community. Secure Network Bootstrapping
Infrastructure. http://docs.opendaylight.org/en/stable-
boron/user-guide/snbi-user-guide.html. [Online]. Oct.
2017.

N. Paladi. “Towards Secure SDN Policy Management”. In: Proc.
8th International Conference on Utility and Cloud Computing.
UCC’15. Dec. 2015, pp. 607-611.

N. Paladi. Trust but Verify: Trust Establishment Mechanisms in
Infrastructure Clouds. PhD Thesis, Dept. of Electrical Engineering,
Lund University. Sept. 2017.

B. Parno. “Bootstrapping Trust in a “Trusted” Platform”. In: Proc.
3rd Conference on Hot Topics in Security. HOTSEC 08. San Jose,
CA: USENIX,]uly 2008, 9:1-9:6.

https://github.com/openvswitch/ovs/blob/99c9ba8ec013b89138440b85ffc061bb90377114/INSTALL.SSL
https://github.com/openvswitch/ovs/blob/99c9ba8ec013b89138440b85ffc061bb90377114/INSTALL.SSL
https://github.com/openvswitch/ovs/blob/99c9ba8ec013b89138440b85ffc061bb90377114/INSTALL.SSL
http://docs.opendaylight.org/en/stable-boron/user-guide/snbi-user-guide.html
http://docs.opendaylight.org/en/stable-boron/user-guide/snbi-user-guide.html

124

Paper III: Trust Anchors in Software Defined Networks

[Pfa+15]

[PG15]

[PG10]

[PK17]

[Por+12]

[RFC3268]

[RFC4492]

[REC5246]

[RFC6241]

[REC7047]

[Sek+12]

[She+10]

B. Pfaff et al. “The Design and Implementation of Open vSwitch”.
In: Proc. 12th USENIX Symposium on Networked Systems Design
and Implementation. NSDI '15. USENIX, May 2015, pp. 117-130.

N. Paladi and C. Gehrmann. “Towards Secure Multi-tenant
Virtualized Networks”. In: 2015 IEEE Trustcom/BigDataSE/ISPA.
Vol. 1. Aug. 2015, pp. 1180-1185.

N. Paladi and C. Gehrmann. “TruSDN: Bootstrapping Trust in
Cloud Network Infrastructure”. In: Proc. 12th International
Conference on Security and Privacy in Communication Networks.
SecureComm’16. Guangzhou, China: Springer, Oct. 2016,

pp- 104-124.

N. Paladi and L. Karlsson. “Safeguarding VNF Credentials with
Intel SGX”. In: Proceedings of the SIGCOMM Posters and Demos.
SIGCOMM Posters and Demos '17. ACM, Aug. 2017,

pp- 144-146.

P. Porras et al. “A security enforcement kernel for OpenFlow
networks”. In: Proc. Ist Workshop on Hot topics in software defined
networks. HotSDN 12. ACM. Aug. 2012, pp. 121-126.

P. Chown. Advanced Encryption Standard (AES) Ciphersuites for
Transport Layer Security (TLS). REC 3268. IETE, May 2002,

pp- 1-7.

S. Blake-Wilson et al. Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS). REC 4492. IETE, May
20006, pp. 1-3.

T. Dierks and E. Rescorla. 7he Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246. IETFE, Aug. 2008, pp. 1-104.

R. Enns, M. Bjorklund, and J. Schoenwaelder. Nezwork
configuration protocol (NETCONEF). RFC 6241. IETFE, June 2011,
pp. 1-113.

B. Pfaft and B. Davie. 7he open vSwitch database management
protocol. REC 7047. IETE, Dec. 2013, pp. 1-35.

V. Sekar et al. “Design and implementation of a consolidated
middlebox architecture”. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation.
USENIX Association. 2012, pp. 24-24.

R. Sherwood et al. “Carving Research Slices out of Your
Production Networks with OpenFlow”. In: ACM SIGCOMM
Computer Communication Review 40 (Jan. 2010), pp. 129-130.

References

125

[Shi+13]

[Shi+16]

[SNS15]

[Tel16]

[Thi+17]

[TPM12]

[TPM20b]

[Vau02]

[Wol]

[Xia+17]

S. Shin et al. “FRESCO: Modular Composable Security Services
for Software-Defined Networks”. In: Proc. 20th Annual Network ¢
Distributed System Security Symposium. NDSS *13. Internet Society,
Feb. 2013.

M.-W. Shih et al. “S-NFV: Securing NFV States by Using SGX”.
In: Proc. 2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. SDN-NFV
Security '16. New Orleans, Louisiana, USA: ACM, Mar. 2016,
pp. 45—48.

S. Scott-Hayward, S. Natarajan, and S. Sezer. “A survey of security
in software defined networks”. In: JEEE Comm. Surveys &
Tutorials 18 (July 2015), pp. 623—654.

Telecommunication Standardization Sector of ITU. Security
requirements and reference architecture for software-defined
networking. Tech. rep. X.1038. International Telecommunications
Union, Oct. 2016.

K. Thimmaraju et al. “The vAMP Attack: Taking Control of
Cloud Systems via the Unified Packet Parser”. In: Proc. 2017 on
Cloud Computing Security Workshop. CCSW °17. Dallas, Texas,
USA: ACM, 2017, pp. 11-15.

Trusted Computing Group. 7PM Main, Part 1-3, Specification 1.2,
Revision 116. Mar. 2011.

Trusted Computing Group. Trusted Platform Module Library
Specification, Family "2.0”, Level 00, Revision 01.16. Oct. 2014.

S. Vaudenay. “Security Flaws Induced by CBC Padding -
Applications to SSL, IPSEC, WTLS ...” In: Proc. International
Conference on the Theory and Applications of Cryptographic
Techniques: Advances in Cryprology. EUROCRYPT *02. London,
UK, UK: Springer-Verlag, 2002, pp. 534-546.

WolfSSL. wolfSSL with Intel SGX on Linux.
https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/
6/14_wolfSSL_with_Intel_SGX_on_Linux.html. Accessed
2017-07-20.

Y. Xiao et al. “Stacco: Differentially analyzing side-channel traces
for detecting SSL/TLS vulnerabilities in secure enclaves”. In: arXiv

preprint arXiv:1707.03473 (2017).

https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/6/14_wolfSSL_with_Intel_SGX_on_Linux.html
https://www.wolfssl.com/wolfSSL/Blog/Entries/2017/6/14_wolfSSL_with_Intel_SGX_on_Linux.html

126

Paper III: Trust Anchors in Software Defined Networks

[XSLI16]

[Zhu+17]

B. C. Xing, M. Shanahan, and R. Leslie-Hurd. “Intel Software
Guard Extensions (Intel SGX) Software Support for Dynamic
Memory Allocation Inside an Enclave”. In: Proc. 2016 Hardware
and Architectural Support for Security and Privacy. HASP ’16.
Seoul, Republic of Korea: ACM, June 2016, 11:1-11:9.

S.Y. Zhu et al. Guide to Security in SDN and NFV. lst.
Heidelberg, Germany: Springer, 2017.

A Recommender System for
User-Specific Vulnerability
Scoring

Abstract

With the inclusion of external software components in their software, vendors also
need to identify and evaluate vulnerabilities in the components they use. A grow-
ing number of external components makes this process more time-consuming, as
vendors need to evaluate the severity and applicability of published vulnerabilities.
The CVSS score is used to rank the severity of a vulnerability, but in its simplest
form, it fails to take user properties into account. The CVSS also defines an en-
vironmental metric, allowing organizations to manually define individual impact
requirements. However, it is limited to explicitly defined user information and
only a subset of vulnerability properties are used in the metric. In this paper we
address these shortcomings by presenting a recommender system specifically tar-
geting software vulnerabilities. The recommender considers both user history, ex-
plicit user properties, and domain based knowledge. It provides a utility metric
for each vulnerability, targeting the specific organization’s requirements and needs.
An initial evaluation with industry participants shows that the recommender can
generate a metric closer to the users’ reference rankings, based on predictive and
rank accuracy metrics, compared to using CVSS environmental score.

This is the full version of the paper below. This version contains an extended background
description, and a more detailed motivation behind choices in the implementation as well as
evaluation.

Linus Karlsson, Pegah Nikbakht Bideh, Martin Hell. “A Recommender System for User-Specific
Vulnerability Scoring”. In I4th International Conférence on Risks and Security of Internet and
Systems, CRiSIS 2019, Hammamet, Tunisia. In press

128 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

1 Introduction

The current software development landscape shows a trend towards increasing
reuse of existing code. Products are constructed by using already existing libraries
and software, such as OpenSSL, libxml, and many others. A report [Syn18], found
that in the scanned applications, on average 57% of the code base was open source.
However, as a maintainer of products, vendors need to identify vulnerabilities in
the components they use. As the number of external components increases, the
workload on developers to identify vulnerabilities and update these components
grows. At the same time, many vendors already have a hard time to identify and
evaluate vulnerabilities, for example in IoT companies [Hos+18].

Updating a component introduces a cost, since it requires a new release cycle
to be completed. This includes building, quality assurance, and the distribution of
the new release to the end-users’ devices. Therefore, vendors would like to patch
only vulnerabilities which are relevant to the product.

The Common Vulnerability Scoring System (CVSS) [CVSS2; CVSS3] defines
a severity ranking for vulnerabilities. The base score does not take into account
individual preferences of users. Instead, CVSS has an environmental metric which
can be used to modify the base score such that it represents user dependent proper-
ties of vulnerabilities. It will rewrite the confidentiality, integrity, and availability
metrics both to adjust them according to measures already taken by the organiza-
tion, but also to capture the actual impact such loss would have on the organiza-
tion. As this will differ between organizations, such a modified metric will better
reflect the actual severity of a vulnerability to that organization.

The environmental metrics must be evaluated on a per vulnerability basis and
are handled manually. This is both time consuming, error prone, and can lead
to inconsistencies in case there are several vulnerabilities and they are handled by
different analysts. Moreover, the environmental metric, though unique for the or-
ganization, only constitutes the sub-metrics available in the base score. Additional
information that might affect the organization is not covered.

Recommender systems work by analyzing information about user preferences,
and combine this with information about items, or with the history of other users.
Their goal is to output recommendations targeting the specific user.

In this paper, we explore ways to improve measuring how a vulnerability af-
fects an organization. Using machine learning techniques applied to recommender
systems, we combine different properties and metrics in order to capture vulnera-
bility data and map it to requirements of the specific organization. Compared to
CVSS environmental metrics, our method provides several advantages.

First, the requirements for the organization is derived by combining explicit
requirements with requirements learned from previous analysis of vulnerabilities.
This data driven approach will not only use personal preferences, but also take
into account how real vulnerabilities have been evaluated previously. Such learned
data is able to capture information that might be overseen by analysts, or that

2 Recommenders and Vulnerability Severity Ratings 129

are difficult to express. Second, our approach is general and is not restricted to
a certain group of properties. It can be amended with new metrics if needed,
focusing on metrics relevant for the given organization or device.

Our goal is to design a recommender that provides a personalized severity as-
sessment based on a user profile. The profile is both explicit, based on the users’
own choices, and implicit as the recommender learns from the users’ previous ac-
tions. We also support inclusion of domain knowledge into the system and discuss
how the different parts can be weighted, following a heuristic approach. Suitable
similarity functions are used to form a utility function that outputs the person-
alized severity assessment. The recommender is also evaluated using participants
from the industry. Though the evaluation is small scale, the results indicate that
our recommender system is able to provide severity information that is closer to
the users’ actual preferences than the CVSS environmental score.

The remainder of this paper is structured as follows: in Section 2 we describe
the necessary background of recommender systems and vulnerabilities. In Sec-
tion 3 the proposed model is described, which is followed by the implementation
of the model in Section 4. The recommender is evaluated in Section 5. Related
work is discussed in Section 6. Finally, the paper is concluded in Section 7.

2 Recommenders and Vulnerability Severity Ratings

Generally, the goal of a recommender is to present recommendations of izems to a
set of users. An item can be for example a movie, a song, or a website. The idea is
that the recommender should present a subset of items to the user, such that the
user finds this subset relevant. The subset is found by matching user preferences
or activity using a learnt profile and sometimes other similar users’ activity. In a
shopping scenario, the added value for the user also leads to higher sales. In this
paper, the goal of the recommender is to add value to an end-user by tailoring the
severity score for vulnerabilities.

Recommender systems can be divided into three major categories [Aggl6]:
knowledge-based systems, content-based systems, and collaborative filtering.

A knowledge-based recommender system can be used in cases where ratings
of items are not available, e.g., rarely used or bought items. It finds similarities
between user requirements and item descriptions. In other words, a knowledge-
based recommender allow users to specify desired domain-specific properties of
items, and the recommender tries to find suitable items.

In content-based systems, item descriptions are used for recommendations
and user ratings are combined with item information. One advantage of content-
based systems is that when a rating is not available for an item, items with similar
attributes that have been rated by the user can be used to make recommendations.
On the other hand, because the lacking history of ratings for new users, they are
not effective at providing recommendations for new users.

130 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

Collaborative filtering systems use collaborative ratings provided by multiple
users to make recommendations. If two users have similar taste of ratings for many
items, this similarity is identified. When only one of them has specified a rating,
the other user can receive a similar rating.

Other than the types above, recommendations can be generated from domain-
specific knowledge. This generates recommendations for a specific field of knowl-
edge, and is designed specifically to handle data for that domain.

The above recommenders works well in defined scenarios. Knowledge-based
systems are efficient in cold-start settings, while collaborative methods works well
when a lot of ratings are available. Various features of different recommenders can
be combined in hybrid systems for better performance.

Many vulnerabilities are reported and given a CVE identifier. The CVE sys-
tem thus provides a centralized repository for vulnerabilities. As an example, in
2018, more than 16,500 vulnerabilities were added to the National Vulnerability
Database (NVD). For each vulnerability, NVD also provides a severity score. This
score, denoted the base score, uses exploitability and impact submetrics in order
to define a severity score between 0-10. This score is made to be reproducible and
organization independent. Instead, the environmental score can be used to adapt
the base score to an organization’s requirements and needs. In this paper, a rec-
ommender system has been applied to CVEs, and the performance is compared
to the environmental metric.

3 System Model

During the design of a recommender system for vulnerabilities, several require-
ments should be fulfilled. The following requirements have been identified: 1)
The recommender should give reasonable recommendations for new users of the
system, and thus avoid the cold-start problem of recommender systems. 2) It
should allow the user to select certain preferences that the system will honor. 3)
It should expose a meaningful subset of user preferences to the user. 4) It should
learn from user actions, so that future recommendations are as relevant as possible
to the user. To avoid privacy concerns, only the user’s own actions are considered.
Thus, methods based on collaborative filtering will not be considered in this paper.
We first note that no single class of recommender system can fulfill all require-
ments. Instead, we propose a hybrid recommender based on three parts. The first
is a domain-based subsystem which provides domain-specific knowledge unique to
a recommender for vulnerabilities. The second part is a knowledge-based subsys-
tem which allows the user to select certain user preferences that they are interested
in. Lastly, the third part is a content-based subsystem which learns from the user’s
previous actions to provide more meaningful recommendations for each user.

3 System Model 131

GD—

User requests
recommen-
dations for

a set c of
vulnerabilities

® I

2/

Domain Ss\?éésgfsm Fetch user Fetggt;‘e?(;[fre
k led fil 7
nowledge w . B, profile u, u cach CVE
N S
Calculate
utility U for

each CVE in ¢

Figure 1: Flow chart of recommendation generation

3.1 Overall Recommender System Design

An overview of the recommendation generation process can be seen in Fig. 1.
When a user requests recommendations for a set ¢ of vulnerabilities, the feature
data, domain-specific knowledge, user profiles, and weights are fetched from their
respective storage. Each of these parts will be described in details in the following
sections. These pieces will then be combined in the actual recommender, which
then outputs recommendations in the range [0, 1]. Such a value is generated for
each vulnerability in the set ¢ of user requested vulnerabilities. A higher value
means that a vulnerability is more relevant to the user.

Our hybrid recommender system learns user preferences based on the user’s
interaction with vulnerabilities. An overview of the rating procedure is shown in
Fig. 2. First, the user rates a vulnerability based on their own preferences. While
such a rating can be of any form, this paper only considers positive feedback. Next,
the current user profile is updated with the new information, so that a new user
profile estimated called % is stored in the user profile database. The profile update
procedure will be explained in Section 3.8.

3.2 Feature Representation

A key task in designing a recommender is constructing a good feature extraction
stage. In our case, this means that we wish to extract features from each vulner-
ability, to be used as input to the recommender, see block (e) in Fig. 1. First, a
selection of features must be made, and later on their respective feature weight
parameters must be decided. We will discuss actual features to use in Section 4.1,
while here we describe how features are represented inside the recommender.

132 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

User marks
vulnerability
as interesting Current user profile u, 4
Update | S User profile db
user profile updater

~

New user profile estimator

Figure 2: Flow chart of user rating a vulnerability

We consider the features of a vulnerability as a vector v, where each individual
feature v; denotes a specific feature value. Such a value could be of any type, such
as a Boolean value, a real number, an integer in a specific range, categorical data,
or hierarchical data.

3.3 User Profile Representation

There are two distinct parts of the user profile. First, there is the explicit user pro-
file u, where the user explicitly select their own preferences. This is similar to the
requirements that can be defined in the CVSS environmental metric. Second,
there is the estimated user profile &, which is determined from the user’s inter-
actions with the system. The system learns this profile about the user automati-
cally. This allows the system to capture user preferences that are hard to explicitly
express for users, either because the feature is complex, or because the user is un-
aware of them. The explicit user profile is the knowledge-based part of our hybrid
recommender, while the estimated user profile is the content-based part.

Each of the two parts of the user profile is represented as a vector, where each
element of the vector describes the interest the user has for each feature. The
elements of the vectors are matched with the feature value from above, to find
vulnerabilities to recommend to the user. This matching is done by a similarity
function, which is further discussed in Section 3.6. In Section 3.8 we describe
how the estimated user profile vector is found.

3.4 Domain-specific Knowledge

The recommendations are not only based on the user profile, but also on a set of
domain-specific knowledge, unique to the field of vulnerability assessment. Such
knowledge is required both to provide recommendations suitable for such a highly
specific area of interest, but also serves as a component to solve the cold-start prob-
lem.

The domain-specific knowledge w is represented in the same way as the user
profile above, but instead of being user-specific, it is global for all users of the

3 System Model 133

system. It is fetched at point (b) in Fig. 1. It can be used to express rules that
should apply for all users, such as prioritizing recent vulnerabilities, or prioritizing
vulnerabilities with lots of activity on social media.

3.5 Subsystem Weights

As described earlier, the recommender system is a hybrid system with three major
parts. The three parts all contribute to the final result of the recommender, but
they should be able to do so to different extents depending on the features, see
Section 4.1. The subsystem weights are fetched at point (c) in Fig. 1.

The subsystems are given a weight between 0 and 1. Let the vectors o, 3, v
describe the weights for the domain-based, knowledge-based, and content-based
subsystems, respectively. For any given feature ¢, the sum «; + 3; +7; = 1. Note
that relative weight of each subsystem can vary between different features.

3.6 Similarity Functions

A similarity function compares a value from the user profile, called the target value
t;, with the feature value extracted from the vulnerability v;. We denote this func-
tion Sim;(¢;, vi), where 0 < sim;(t;,v;) < 1. Higher value means that the fea-
ture value is more similar to the target value. Here, we use the similarity functions
given below. For examples of other variants, see e.g. [Smy07].

The similarity function for the distance between ¢; and v; is given by

. t; — v;
SiMgige(ti,v;) = 1 — 1 d

®

.)
maxdise — MINdjse
where maxg;; and ming; are the maximum and minimum possible distances be-
tween t; and v;. This guarantees that the output is in the range [0, 1].

Another similarity function is a scoring function, which sees the target value ¢;

as a multiplier to multiply the feature value with. This is suitable when we simply
wish to rank higher feature values higher.

SIMpule(ti, vi) = i - v; ()

Note that ¢; must be selected so that the output range still stays within [0, 1].

In the two previous similarity functions, both the target value ¢; and the feature
value v; have been numerical values. However, as described earlier in Section 3.2,
they can be of any type. Two examples of such similarity functions are SiMgaydisc
and SiMgesines which calculates the difference between two dates, and the cosine
similarity between two vectors, respectively. The date similarity Simgayqisc can be
implemented as in (1), with the date being days since the epoch, while the cosine

134 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

similarity is calculated using

n n n
SiMeosine (tis Vi) = Y _ tijvij > ot v, ©)
i—1 i=1 ;

=1

where ¢;; and v;; are the 4 components of the vector ¢; and v; respectively.
A special case is a similarity function for Boolean values. In this case, t; is
simply a constant which is returned if v; is true.

. t;, if v; 1s true,
Slmboost(tia Ui) = . (4)
0, otherwise

Note that the similarity functions as described above follows the definition
from [Smy07], where the similarity function compares individual feature values.

3.7 Generating Recommendations

Combining the building blocks from the sections above, a complete recommender
can now be described. The goal here is to describe a wuzility function U, which takes
a given vulnerability v as input, and outputs the utility value, i.e. the user-specific
severity assessment. As can be seen at point (f) in Fig. 1, the utility function U is
the final step in a series of actions.

Recall that the design is a hybrid recommender. Therefore, subsystem weights
will be combined with the similarity functions for the different feature values for

all d features. Utility U for vulnerability can be described as:

d
1)) .
U= d ; a; - sim;(w;, v;) + Bi - simg(ug, v;) + v, - sim; (G, v;), (5)

where «;, 3;,7; are the subsystem coeflicients, Sim; is the similarity function for
the i™ feature, w;, u;, G; are the target values for feature ¢ for the different subsys-
tems (i.e. elements of w, u, @ respectively), and v; is the feature value for feature
1.

Because the similarity functions are limited to the range [0, 1], and a; + 5; +
vi = 1, the output of U will be a value between 0 and 1. A higher value indicates
higher utility, i.e. a better match to the user’s preferences.

3.8 Updating User Profile

For estimating the user profile @, we wish to combine the previous estimation with
the new data about the user’s preferences. We consider only input of vulnerabilities
that the user is interested in, that is, positive training examples. Then, the update

4 Implementation 135

function update can be expressed as a function of the form %’ = update(u, v),
i.e., a function taking a new vulnerability v, the current u, and returning a new
estimation of the user preferences u’.

Depending on what kind of user preferences the system should model, there
are different ways to design the update function. In [MS00] the authors used
the vector space model to represent text from web pages. The user profile was
represented as a single vector %, therefore the authors represented their update
function as ' = a- @+ v, where a is a decay factor. Since the vectors had weights
determined by the tf-idf scheme, in combination with using the cosine similarity
measure, simple addition of the vectors worked well as an update function, because
the cosine similarity measures vector orientation, not magnitude.

We propose an approach inspired by the paper above, with some adaptions to
make the update function applicable for any type of feature, not only text. The
proposed update function is given by

update(w, v) = (mery(tq,v1), ..., mer(t;,v;), ..., merg(tq,vq)) , (6)

where d is the number of features, and therefore elements in @ and v.

For each pair (1;, v;), a merge function mer; is applied. The merge function
is similar to the similarity functions Sim;, but instead of comparing two elements,
it merges them. The merging needs to be handled different for each feature type,
and this construction is thus a generalization of [CS98; MS00], where the merge
function is equivalent to mer;(4;, v;) = 4; + v;.

Another example of a more complex merge function, used later in this paper,

is a merge function based on the Modified Moving Average (MMA):

(S — l)fbi =+ v;

mermma(’ah Ui) = S 5

7)
where S' controls the exponential smoothing.

Just as in Section 3.6, where similarity functions could handle both scalars and
vectors, depending on the feature type, merge functions must support this as well.
Consider the case where ; and v; are vectors, then the following merge function
performs element-wise addition over n-dimensional vectors ; and v;.

mer,dd (i, vi) = (i1 + Vi1, U2 + V2, ..., Uin + Vin) , (8)

4 Implementation

Given the theoretical model described in the previous section, the actual recom-
mender can now be constructed. At first, the set of features must be selected.
While the proposed model is flexible enough to handle many different feature
types, an actual implementation must still have suitable similarity functions, merge
functions, and subsystem weights for all selected features. This section describes

136 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

Table 1: Feature selection in the implementation, feature types, weights of domain-based
(o), knowledge-based (3), and content-based () subsystems, and finally similar-
ity and merge functions

Subsystem weights Functions
Features Data type a p vy sim mer
Impact metrics Categorical 0.0 0.5 0.5 SIMmule mer mma
Exploitability subscore Numerical 0.0 0.8 0.2 SIMpmule Mermma
Authentication Categorical 0.3 0.35 0.35 SIM pule mermma
Access vector Categorical 0.3 0.35 0.35 SiMgise Mermma
CWE Hierarchical 0.0 0.0 1.0 SiMeosine ~ METL4q
Published date Date 1.0 0.0 0.0 SiMgaydisc N/A
Metaspolit exploits Boolean 0.3 0.7 0.0 SiMpoos: N/A
Linked external resources Numerical 1.0 0.0 0.0 SIMpule N/A
Google hits Numerical 1.0 00 0.0 SIMmulc N/A

such decisions for our implemented recommender. We stress that this is an ex-
ample implementation of the model described in the previous section. Another
implementation may choose different features, weights, or functions.

4.1 CVE Features

The implementation has used several sources for vulnerability information. A ma-
jority of the data is collected from NVD [NVD], but also other sites such as
CVEdetails [MIT], and Google have been used. A list of features extracted is
available in Table 1, and below we discuss the features in more detail.

Impact metrics includes the impact metrics in the CVSS score, namely confiden-
tiality, integrity, and availability impact. These are categorical values where
the impact can be NONE, PARTIAL, or COMPLETE. In our implementation,
we map these values to numerical scores of 0.0, 0.5, and 1.0 respectively.
These metrics are interesting since they describe how serious the impact is
on different security properties.

Exploitability subscore is the exploitability subscore taken from the CVSS rank-
ing, which estimates the ease of exploiting the vulnerability. This is a nu-
merical value between 0.0 and 10.0. This metric is interesting since a higher
value means that the vulnerability is easier to exploit.

Authentication (CVSS metric) describes how many times an attacker needs to
authenticate before performing an attack. It is a categorical feature with
values NONE, SINGLE, or MULTIPLE. In our implementation, we map these
values to numerical scores of 1.0, 0.5, and 0.0 respectively. This is interest-
ing since if no authentication is required, a vulnerability is easier to exploit.

4 Implementation 137

Access vector (CVSS metric) describes the attack vector for the vulnerability. It is
categorical with the value NETWORK, ADJACENT, LOCAL. In our implemen-
tation, we map these to numerical values of 1.0, 0.5, and 0.0, respectively.
The access vector is relevant since different users have different threat mod-
els. Some users may consider network attacks as most serious, while others
may perceive local attacks as more serious. Later in the paper we will de-
scribe how the recommender allows the user to describe their preferences.

CWE ID categorizes vulnerabilities according to the type of the vulnerability.
This is a hierarchical structure, but we treat each individual CWE as a cate-
gory in our implementation, because there is only a limited set of all possible
CWE IDs that are actually used in CVEs. We expect the CWE ID to be
important in providing recommendations based on the user’s history, since
it describes the vulnerability class.

Metasploit exploits is a Boolean value which describes if there is a Metasploit
module [Rap] available for this vulnerability. A module in Metasploit means
that attackers may find and launch attacks through easy-to-use tools. Thus,
such vulnerabilities are considered more serious.

Linked external resources isa numerical value which counts the number of linked
resources for a specific CVE on NVD. These resources may include links
to news articles, exploits, or security advisories. A vulnerability with a high
amount of external resources may be more relevant to consider.

Google hits is a numerical value of the number of Google search hits a specific
CVE-ID has. Just like the number of linked external resources, this tells the
recommender about the popularity of the vulnerability in the Internet.

4.2 User Requirements Selection

When users start using the system, they should select what makes certain vulner-
abilities more relevant to them. This is used to create the explicit user profile ©
for the recommender. The user profile is constructed by rating the importance of
certain information about a vulnerability. The rating should be in the interval of
[0,1], and will be used to construct the vector u. User requirements can be selected
in many ways, in our implementation the user can rate the following properties.

* Confidentiality impact: To what extent the vulnerability may cause private
information to be leaked to an attacker.

* Integrity impact: To what extent the vulnerability may cause stored infor-
mation to be modified by an attacker.

* Availability impact: To what extent the vulnerability may cause a system to
be unavailable to perform its normal functions.

138 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

* Exploit accessibility: How widely accessible or easily used attack code that
can be found for the vulnerability.

* Access vector: What access vector that is used for the attack, e.g. if network
access is enough, or if local access is required.

* Authentication: If the vulnerability requires an already authenticated user,
of if unauthenticated users can trigger the vulnerability as well.

4.3 Subsystem Weights

The choice of subsystem weights for each individual feature is based on two main
aspects: (i) is it meaningful for users to explicitly state their preference about the
feature, and (7) do users’ preferences for the feature differ, or do all users value the
feature in the same way?

Recall that o, 3,7 correspond to the domain-based, knowledge-based, and
content-based parts of the recommender, respectively. In Table 1 the choice of
subsystem weights for each feature can be seen. We discuss our choices below, but
other choices are of course possible.

Since impact metrics are highly user-dependent, the domain-based part is set
to 0.0, so that the user’s explicit choice and history are the only things affecting
the score for the impact metrics. In addition, an even split between explicit and
implicit user preferences is selected. Similar arguments can be made for the Ex-
ploitability subscore, but since we wish the users to have a higher degree on ex-
plicitly selecting the importance of this setting, we have a larger 3 for this case.

The Authentication and Access vector features have a non-zero domain-based
component, since the importance of these factors can be considered more universal
across users.

Looking at the CWE ID, the type of underlying weakness that is of interest
can be very user-dependent. Since there are several available CWE IDs, the rec-
ommender solely learns the user profile based on the user’s previous action. Thus,
both the domain-based and knowledge-based components are zero.

The opposite is true for the publication date, which is treated equally for all
users, thus marking more recent vulnerabilities as more important. The same ar-
gument can be made for the number of linked external resources, and the number
of Google hits.

Finally, the availability of Metasploit exploits is seen as a combination of a
domain-based and knowledge-based preference.

4.4 Similarity and Merge Functions

The choice of similarity and merge functions are described in Table 1. Refer to
Section 3.6 for the actual definitions of the similarity functions.

5 Evaluation 139

In general, Sim, is the most common similarity function, since it maps a
higher feature value to a more important vulnerability, by multiplying with some
factor. It is a good fit for features ranging from less to more serious.

Considering a few special cases, such as access vector, the Simg;,, distance sim-
ilarity function is used instead, since this instead measures how close the feature
value is to the user’s preference. In this way, the user can select to rank e.g. local
attacks higher than network-based attacks.

The Metasploit and publication date features have straightforward similarity
functions based on their data type, while the CWE feature requires the use of the
SiMosine similarity to correctly handle the comparison between CWE vectors.

If we instead look at merge functions, a modified moving average mMer,n, is
used for most features, since it provides a simple way to converge towards to user’s
preference. For CWE, the special mer,qq function needs to be used such that the
vector of previously seen CWEs are merged with the newly rated CWE.

Finally, features with ; = 0 do not need merge functions, and are marked as
N/A in Table 1.

5 Evaluation

In this section we present an initial evaluation of our recommender. The main
purpose of the evaluation is to determine if the system fulfills its goals, which in
our case is providing an assessment according to users’ own preferences.

There are three common types of evaluation techniques for recommenders,
namely user studies, online methods, and offline methods. In user studies, feed-
back is collected from users before, during, and after use of recommender. In on-
line studies, information is collected from a running recommender, for example
using A/B testing, so that results from two different groups with recommenders
can be compared. Finally, in offline methods, a set of historical data is used to
evaluate the recommender, without requiring ongoing interactions from users.

An online evaluation requires an already existing user base, which makes it
difficult to use in our setting where we evaluate a new recommender. While offline
evaluation methods are popular in recommender system evaluation [Aggl6], it
requires the availability of historical data, which is domain specific. While data
sets such as the Netflix Prize data set [Net] is widely used, it cannot be used to
evaluate a recommender system for vulnerabilities.

Because of the reasons above, we have decided to collect our own offline data
set from users. This is similar to the user study approach described above, but
the users do not actually use the recommender system, instead we ask them to
manually provide their user profile, and rank a set of vulnerabilities. These results
are then used as a data set to evaluate the recommender. Since the utility function
applied to a set of vulnerabilities will induce a ranking of the vulnerabilities, we
can use that ranking to determine how well our system succeeds in recommending
vulnerabilities.

140 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

5.1 FEvaluation Metrics

There are several different metrics used in recommender system evaluation. How-
ever, care must be taken to select metrics that are suitable to the type of rec-
ommender in question. Two common metrics are precision and recall, which
both measure the frequency with which a recommender makes relevant decisions.
While common, these metrics are ill-suited for our recommender, since they con-
sider other types of recommender system goals. In our recommender, the output
is utility metrics for vulnerabilities, where it does not make sense to talk about
precision and recall. Instead, we wish to measure the deviation between the rec-
ommender output and the actual rankings.

To do this, we have chosen predictive accuracy metrics and rank accuracy met-
rics, as these metrics are closer to the goal of recommender systems similar to
ours [DLS07; RSGO09]. Predictive accuracy metrics measure how close the recom-
mender system’s predicted ratings are to the true user ratings [GS15]. Root Mean
Square Error (RMSE) is probably the most popular metric used in evaluating ac-
curacy of predictive ratings. The system generates predicted ratings 7,; for a test
set L of user-item pairs (u, 7) for which the true ratings 7; are known.

The other type of metric, rank accuracy metrics, measure the ability of a rec-
ommender system to produce an ordering of items that matches how the user
would prefer to have them ordered. To be able to evaluate based on rank ac-
curacy, it is necessary to obtain reference ranking. We used the Yao’s Normalized
Distance-based Performance Measure (NDPM) [Ya095] as rank accuracy metric,
which calculates the difference between the order of items in preferred user order,
and the system’s reccommendation order. The RMSE and NDPM can be calculated
as follows [GS15]:

R - u0
RMSE = \/Z(u i)eL(TUi — rui)?/|L] NDPM — %

where C'~ is the number of contradictory preference relations between the system
ranking and the user ranking, C*? is the number of compatible preference rela-
tions, and C* is the total number of preferred relationships in the user’s ranking.
See [GS15] for details. The NDPM value varies between 0 and 1, where 0 means
that the orderings are identical, and 1 means the ordering is reversed.

5.2 Experiment Results

In this section we want to evaluate the performance of the proposed recommender.
In order to do this we selected a subset of CVEs, and then compared the rec-
ommendations made by the system, the manual ranking done by users, and the
CVSS2 environmental scores.

For the evaluation, 8 users have been asked to participate. The users are work-
ing in the industry, for five different companies, and are people with high secu-

5 Evaluation 141

rity awareness. These people are potential users of such a recommender. Each
user started by selecting their own user profile, with preferences described in Sec-
tion 4.2.

Then, 30 sample CVEs were selected, the CVEs were from different products,
years, described different vulnerabilities, and were presented in a random order.
The users were asked to rank these CVEs on a scale from 0 to 10, where a higher
value indicated higher interest to the user. The users were asked to only consider
properties of the CVE itself, rather than the product it affected. To avoid bias from
the CVSS base score, this score, as well as the impact and exploitability subscores,
were hidden from the user during the evaluation. The users could however see
other information in the CVE to make an informed decision.

After collecting the data, we proceed with the actual evaluation. The CVEs
were divided into training and test sets using k-fold cross-validation, using k = 5.
We performed an evaluation where both the user profile and the training set were
used to train the recommender, before generating recommendations. As a com-
parison, we also compared the results to using the CVSS2 environmental score,
with explicit user profiles mapped to impact subscore modifiers. For both cases,
the reference ranking was the manual ranking performed by the users.

The RMSE and NDPM values were then calculated between the reference
ranking and the recommender output, and between the reference ranking and
the CVSS2 environmental score. The metrics can be seen in Table 2. We see that
the RMSE values of the recommender system are lower compared to the CVSS
environmental score. This indicates that the recommender has higher predictive
rating accuracy for all users in comparison to just using the environmental score.
The results also indicate higher rank accuracy in comparison to the environmental
score based on the NDPM metric, for the majority of test users.

Table 2: RMSE and NDPM of recommender system and CVSS environmental score, relative
the reference ranking, for different users

RMSE NDPM
Recommender Environmental Recommender Environmental
User 1 0.179 0.222 0.303 0.287
User 2 0.247 0.340 0.195 0.271
User 3 0.200 0.256 0.207 0.333
User 4 0.153 0.296 0.179 0.276
User 5 0.168 0.286 0.294 0.283
User 6 0.138 0.234 0.175 0.228
User 7 0.115 0.224 0.147 0.251

User 8 0.198 0.267 0.349 0.340

142 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

6 Related Work

In [Far+18], a vulnerability management system called VULCON was proposed.
VULCON’s objective is to reduce time-to-vulnerability remediation (TVR) and
total vulnerability exposure (TVE) within an organization. VULCON takes in-
puts such as vulnerability scan data, target TVR requirements, and personnel re-
sources. It then utilizes severity, persistence, and age of vulnerabilities to prioritize
vulnerabilities. Compared to our paper, VULCON uses these three features, while
our recommender can utilize many vulnerability features. Furthermore, VUL-
CON does not include any learning based on user history similar to ours.

Another recommender system has been suggested in [Gad+16]. Among oth-
ers, the authors” describe a system which can speed up response to events such as
cyber attacks. They use features such as the time since the vulnerability’s discov-
ery, severity of the exploit, existence of a patch, difficulty of deploying the patch,
and impact of the patch on users. Compared to our paper, the authors does not
at all discuss the construction of such a system. Their goal is also different, since
their recommender should suggest an appropriate action on how to handle the
vulnerability.

In [LS18], the authors present a method where they use textual description of
vulnerabilities to construct a graph of related vulnerabilities. The authors’ goal of
producing a vulnerability ranking is similar to ours, but they do not discuss user-
personalized rankings. The used features are also different: their recommender
looks only at keywords from textual description, while we currently look at many
other vulnerability features.

Previous work has also looked at designing different vulnerability metrics, as
opposed to using the CVSS score. In [LZ11] the authors proposed VRSS, a system
to rate and score vulnerabilities, using a combination of qualitative and quanti-
tative methods, resulting in scores closer distributed to the normal distribution.
WIVSS [SSA13] is a system with similar goals, where the authors propose a scoring
system with the goal of more diverse scores and better accuracy. However, neither
of these two vulnerability metrics consider individual user preferences as done in

this paper.

7 Conclusions and Future Work

We have defined, implemented and evaluated a recommender system providing
severity assessments of vulnerabilities. The recommender system is specialized for
vulnerabilities, and is designed to be useful specifically for the context of vulnera-
bility assessment. Recommendations are generated by considering both users’ ex-
plicit preferences, and by considering their previous interactions with the recom-
mender. The system can be used with a variety of different inputs, and can easily
be extended with new features if desired.

References 143

The evaluation shows that the system gives better reccommendations compared
to just using the CVSS environmental score. To be able to tune the parameters
for optimized performance, data from more users is needed. However, the results
from our evaluation with real users suggests that it is possible to improve the assess-
ment using a recommender system approach. Other possible future work includes
consider negative feedback in the learning phase, which may further improve the
results when learning is enabled.

Acknowledgements

This work was partially supported by the Swedish Foundation for Strategic Re-
search, grant RIT17-0035, and partially supported by the Wallenberg Autonomous
Systems and Software Program (WASP) funded by Knut and Alice Wallenberg

foundation.

References

[Aggl6] C. C. Aggarwal. Recommender Systems. Springer, 2016.

[CS98] L. Chen and K. Sycara. “WebMate: A Personal Agent for
Browsing and Searching”. In: Proceedings of the Second
International Conference on Autonomous Agents. AGENTS *98.
Minneapolis, Minnesota, USA: ACM, 1998, pp. 132-139.

[CVSS2] P. M. Mell et al. A Complete Guide to the Common Vulnerability
Scoring System Version 2.0.
https://www.nist.gov/publications/complete-guide-
common-vulnerability-scoring-system-version-20.
2007.

[CVSS3] First. Common Vulnerability Scoring System v3.0: Specification
Document.
https://www.first.org/cvss/specification-document.

[DLS07] M. Degemmis, P. Lops, and G. Semeraro. “A content-collaborative
recommender that exploits WordNet-based user profiles for
neighborhood formation”. In: User Modeling and User-Adapred
Interaction 17.3 (2007).

[Far+18] K. A. Farris et al. “VULCON: A System for Vulnerability
Prioritization, Mitigation, and Management”. In: ACM Trans.
Priv. Secur. 21.4 (June 2018), 16:1-16:28.

[Gad+16] V. N. Gadepally et al. “Recommender Systems for the
Department of Defense and the Intelligence Community”. In:
Lincoln Laboratory Journal 22.1 (2016), pp. 74-89.

https://www.nist.gov/publications/complete-guide-common-vulnerability-scoring-system-version-20
https://www.nist.gov/publications/complete-guide-common-vulnerability-scoring-system-version-20
https://www.first.org/cvss/specification-document

144 Paper IV: A Recommender System for User-Specific Vulnerability Scoring

[GS15]

[Hos+18]

[LS18]

[LZ11]

[MIT]

[MS00]

[Synl8]

[Yao95]

A. Gunawardana and G. Shani. Fvaluating recommencder systems.
Recommender systems handbook. Springer, Boston, MA, 2015.

M. Hast et al. “Industrial Practices in Security Vulnerability
Management for IoT Systems — an Interview Study”. English. In:
Proceedings of the 2018 International Conference on Software
Engineering Research & Practice. 2018, pp. 61-67.

Y. Lee and S. Shin. “Toward Semantic Assessment of Vulnerability
Severity: A Text Mining Approach”. In: Ist International Workshop
on EntitY REtrieval (EYRE ’18). 2018.

Q. Liu and Y. Zhang. “VRSS: A new system for rating and scoring
vulnerabilities”. In: Computer Communications 34 (2011),

pp- 264-273.

MITRE Corporation. CVE details.
https://www.cvedetails.com/.

R. v. Meteren and M. v. Someren. “Using content-based filtering
for recommendation”. In: Proceedings of ECML 2000 Workshop:
Machine Learning in Information Age. 2000, pp. 47-56.

Netflix. Netflix Prize. https://www.netflixprize.com/.
(visited on: 2019-02-07).

NIST. National Vulnerability Database.
https://nvd.nist.gov/.

Rapid7. Vulnerability and Exploit Database.
https://www.rapid7.com/db.

D. Rosaci, G. Sarné, and S. Garruzzo. “MUADDIB: A distributed
recommender system supporting device adaptivity”. In: ACM
Transactions on Information Systems (TOIS) 27.4 (2009).

B. Smyth. “Case-Based Recommendation”. In: 7he Adaptive Web:
Methods and Strategies of Web Personalization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 342-376.

G. Spanos, A. Sioziou, and L. Angelis. “WIVSS: A New
Methodology for Scoring Information Systems Vulnerabilities”.
In: Proceedings of the 17th Panbellenic Conference on Informatics.
PCI ’13. Thessaloniki, Greece: ACM, 2013, pp. 83-90.

Synopsis Center for Open Source Research & Innovation. 2018
Black Duck by Synopsys Open Source Security and Risk Analysis. Last
accessed: 2018-11-08. 2018.

Y. Y. Yao. “Measuring retrieval effectiveness based on user
preference of documents”. In: Journal of the American Society for
Information Science 46.2 (1995).

https://www.cvedetails.com/
https://www.netflixprize.com/
https://nvd.nist.gov/
https://www.rapid7.com/db

Privacy-enabled
Recommendations for
Software Vulnerabilities

Abstract

New software vulnerabilities are published daily. Prioritizing vulnerabilities ac-
cording to their relevance to the collection of software an organization uses is a
costly and slow process. While recommender systems were earlier proposed to ad-
dress this issue, they ignore the security of the vulnerability prioritization data. As
a result, a malicious operator or a third party adversary can collect vulnerability
prioritization data to identify the security assets in the enterprise deployments of
client organizations. To address this, we propose a solution that leverages isolated
execution to protect the privacy of vulnerability profiles without compromising
data integrity. To validate an implementation of the proposed solution we inte-
grated it with an existing recommender system for software vulnerabilities. The
evaluation of our implementation shows that the proposed solution can effectively
complement existing recommender systems for software vulnerabilities.

1 Introduction

Modern enterprise software systems are increasingly complex. Organizations com-
monly use a plethora of software systems - running either in-house or in public
clouds - running on hundreds or thousands of devices. A simple and carefully
implemented software library may run in isolation for extended periods of time

Linus Karlsson and Nicolae Paladi. “Privacy-enabled Recommendations for Software
Vulnerabilities”. In 17¢h IEEE International Conference on Dependable, Autonomic and Secure
Computing, DASC 2019, Fukuoka, Japan. IEEE.

146 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

without maintenance. However, as more and more software applications are inter-
connected, they must be adapted to support new communication protocols, up-
dated to process new types of input data, and patched to fix vulnerabilities. Soft-
ware patching is costly, since it requires specialist human effort and must be done
shortly after vulnerabilities are discovered - often during weekends and evenings
- in order to minimize the risk of exploits. Since software vulnerabilities can be
discovered on any layer of the software stack, the cost is compounded by the com-
plexity of selecting and prioritizing the patches.

Information about software vulnerabilities is collected from several sources,
such as public or private security information providers, security researchers or
software vendors. Vulnerabilities discovered by the vendor of the respective soft-
ware are often treated as software bugs and corrected in the regular release cycle.
Other vulnerabilities, discovered by software users or security researchers, are ei-
ther communicated directly to the vendors, publicly released, or sold as zero-day
exploits. Publicly known vulnerabilities are assigned a common vulnerability and
exposure (CVE) identifier, along with high-level attributes such as: perceived im-
pact on confidentiality, integrity, and availability; attack complexity; attack vector;
and required privileges. With new vulnerabilities published daily, software users
must review the relevant vulnerabilities, understand their impact and prioritize
them. This makes prioritizing software vulnerabilities a stringent issue for both
software vendors and software users.

Recommender systems [Aggl6] were earlier proposed as solutions for vulnera-
bility prioritization [Boz+10; Far+18; Cob+18]. However, vulnerability profiles, i.e.
the priority ranking of vulnerability entries, reveal valuable information about the
software libraries, packages, applications and protocols that are part of the user’s
software bundle, i.e. the collection of software applications, services and proto-
cols an organization uses. Access to this information allows an adversary to build
an intimate profile of an organization’s internal systems - including specific soft-
ware packages, versions and configurations. This enables highly effective, targeted
attacks using zero-day exploits. While the recommender systems proposed ear-
lier address to some extent vulnerability prioritization, they do not implement
mechanisms to protect the vulnerability profiles. We address this by describing
the design, implementation and evaluation of a privacy-preserving mechanism for
software vulnerability recommender systems. We leverage commodity isolated ex-
ecution environments to protect vulnerability profiles using an approach derived
from earlier work on differential privacy [Dwo+06], yet without compromising
the integrity of vulnerability data. Our contribution is as follows:

* We describe a privacy protection mechanism to protect client vulnerability
profiles; to the best of our knowledge, this is the first work addressing the
privacy of client vulnerability profiles.

* we describe the implementation and evaluation of a prototype solution, im-
plemented using Intel SGX enclaves and tested with a functioning vulner-

2 Preliminaries 147

ability recommender system.

The remainder of this paper is organized as follows. We introduce the back-
ground, including the system model and the threat model in section 2. We discuss
the solution space for protecting vulnerability profile privacy in Section 3, describe
the implementation in Section 4 and present the evaluation results in Section 5.
Finally, we discuss the related work in Section 6 and conclude in Section 7.

2 Preliminaries

We follow earlier work and define software vulnerabilities as exploitable software
flaws in software systems that pose security risks [Boz+10; Fre+10]. Frei et al. de-
scribe several distinct phases of the vulnerability life-cycle: creation, discovery, ex-
ploit availability, public disclosure, patch availability, and patch installation. The
life-cycle events are grouped into three risk exposure phases: pre-disclosure, post-
disclosure, and post-patch [Fre+10]. In the pre-disclosure phase, neither vendors
nor users can affect the impact of an externally discovered security vulnerability.
Once a vulnerability is disclosed (either by the vendor itself or externally), vendors
and users can develop patches to correct the vulnerability, or alternatively mitigate
it through workarounds. In the scope of this paper, we consider software vendors
as the only legitimate source of software patches. Considering the large number
of software vulnerabilities released on a daily basis, assessing the impact of a vul-
nerability on a particular software bundle is a tedious task. While the community
proposed a variety of approaches for vulnerability risk assessment [SK08] they are
often ad-hoc, do not scale, and are not sufficiently robust to reflect the complexity
of enterprise environments.

Automating vulnerability prioritization can reduce the duration and the risk
exposure of the post-disclosure phase. Rapid prioritization of software vulnerabili-
ties can both speed up patch development and patch installation. However, despite
increasing productivity, software vulnerability recommenders pose data privacy
risks as they may leak client vulnerability profiles, including information about
software vulnerabilities that users and vendors consider of primary interest. We
address this by proposing an approach to protect client vulnerability profiles in
software vulnerability recommenders. We next describe the system model of au-
tomated vulnerability prioritization followed by the treat model we consider in
this work.

2.1 Automating Vulnerability Prioritization

Automatic tools to provide software vulnerability recommendations have been de-
scribed earlier [Far+18; Cob+18]. Such tools help enterprise customers with rec-
ommendations and are often provided in a Software-as-a-Service (SaaS) delivery
model. A key component in this scenario is that the service provider must have

148 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

knowledge both about the customers’ software bundles and of customer data such
as user preferences from historic interactions with the system.

We consider the scenario described below. The service provider offers two
distinct features: vulnerability identification, and vulnerability prioritization. The
output of vulnerability identification is a list of vulnerabilities, encoded as CVE
identifiers. In the following step, the vulnerability prioritization step, the list of
CVE identifiers is passed to a recommender, which then ranks the list of CVEs ac-
cording to user preferences. Output from the identification phase can be obtained
from various sources [Git; Far+18; Cob+18]. In this paper we focus on the vulner-
ability prioritization phase.

Clients require a profile shared with a service provider in order to enable the
recommender system to provide personalized ranking in the prioritization phase.
This profile contains the client’s individual preferences, including client consid-
erations while assessing the severity of a vulnerability. We consider the scenario
illustrated in Figure 1. A client requests recommendations for a given set of CVE
identifiers from the recommender system. To get personalized recommendations,
the client also attaches its client profile p to the request. The recommender returns
a personalized ranking r of the given vulnerabilities. Note that in this scenario,
the recommender can trivially map a client to its profile; there is no data privacy.

p, Cves

Client Recommender

r

Figure 1: Vulnerability prioritization: a client requests recommendations for a set of CVEs,
using client profile p

2.2 Isolated Fxecution

In this paper we propose a mechanism to protect the privacy of client requests to
the recommender. This mechanism requires confidentiality of the data, require-
ments that can be satisfied using isolated execution. We use SGX enclaves [Ana+13;
McK+13; XSL16; McK+16] to create commodity trusted execution environments
(TEEs) during operating system run-time. We use TEEs to protect the privacy
of client vulnerability profiles. SGX enclaves rely on a trusted computing base of
code and data loaded at enclave creation time, processor firmware, and processor
hardware. Program execution within an enclave is opaque to the underlying op-
erating system and other mutually distrusting enclaves on the platform. Enclaves
operate in a dedicated memory area called the Enclave Page Cache, a range of dy-
namic random access memory that cannot be accessed by system software or pe-
ripherals [McK+13]. The CPU firmware and hardware are the root of trust of an
enclave. Isolation features implemented in firmware and hardware prevent access
to the enclave’s memory by the operating system and other enclaves. While we use

2 Preliminaries 149

Intel SGX enclaves in our implementation of the privacy-preserving service, alter-

native commodity TEEs [Mof+18; Bra+19] may be used.

2.3 Threat Model

To construct a correct and relevant threat model in the scenario described above,
we conducted in-depth interviews with software vendors and users that operate
enterprise deployments. Software vendors highlight the importance of protect-
ing information about relevant software vulnerabilities during the pre- and post-
disclosure phases, i.e. while assessing the vulnerability impact and prioritizing it,
as well as before releasing a software patch (see Figure 2). We aim to protect the
confidentiality of the vendor’s software vulnerability priority ranking, since it re-
veals information about the severity of the vulnerability (as perceived by the ven-
dor) and can be used to guide exploit development. We assume clients have no
information about unpublished vulnerabilities. Hence, we must protect the con-
fidentiality of the relevance and priority of the released security patches during the
post-disclosure (denoted as ?,,4) and post-patch (denoted as ¢,,,) phases, i.c. up to
the point when software users patch their systems.

Software user

Pre-disclosure Post-disclosure Post-patch

Exploit Public Patch Patch
Availability Disclosure Availability Installation

Creation Discovery
Figure 2: Vulnerability confidentiality window

We assume the duration of the post-disclosure and post-patch phases is con-
stant, equal to 7"
tpa +tpp =T)

The proposed architecture contains three main components - Client, Interme-
diary and Recommender. We describe the security assumptions about the com-
ponents of the proposed architecture.

Client

The Client is potentially malicious, and may submit queries containing requests
for arbitrary CVE identifiers. The goal of the malicious Client is to reveal the
privacy-preserving algorithm implemented in the Intermediary and distinguish
the vulnerability profiles of other Clients from the vulnerability profiles generated
by the Intermediary. A set of Clients may collude to achieve this purpose.

150 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

Recommender

The Recommender is an honest-but-curious entity that aims to reveal the vulnera-
bility profile of a specific Client. The Recommender is assumed to have access to
powerful computation capacity and is not sensitive to changes in the computation
load of the queries received from the Client. A collusion between the Client and
the Recommender reveals the vulnerability profile of the colluding Client and is
out of the scope of this model.

Intermediary

The Intermediary is potentially malicious and aims to reveal the vulnerability pro-
file of a specific Client. A collusion between the Client and the Intermediary
reveals the vulnerability profile of the colluding Client and is out of the scope of
this model. However, we consider that the isolated execution enclave that hosts
the privacy protection mechanism is trustworthy; its trustworthiness can be es-
tablished through remote attestation by any of the components participating in
the protocol. Isolated execution enclaves used in the implementation of the In-
termediary are vulnerable to side-channel attacks [Wan+17]; we explicitly exclude
side-channel attacks from this threat model, since they can be mitigated through
improved software implementation.

We consider a remote adversary with attack capabilities on the network and
platform level. The adversary is capable to observe and interact with the network
communication between Client and the Recommender, as well with the commu-
nication among the internal services of the Recommender. Furthermore, the ad-
versary can launch arbitrary processes and obtain root access on the hosts running
the Recommender.

3 Vulnerability Profile Privacy

As discussed in Section 2.3 above, our goal is to protect the privacy of individual
Client vulnerability profiles. To design a solution for this task, we consider the
following defining aspects: (7) Client profile updates are sparse (e.g. one request
every period T'); (i) vulnerability profiles evolve after every period T'; (iii) the
value of an arbitrary snapshot of the vulnerability profile decays in time 7', equal
to the length of software user’s confidentiality window. These are aspects that are
sound in the context of vulnerability prioritization, but may not hold for other
recommender systems.

While a myriad of definitions, approaches and techniques have been proposed
for privacy protection, it remains an elusive goal. One reason is the discrepancy
between the assumptions required for a solution to offer data privacy protection in
the presence of other related data sets. Another reason is the trade-off between data
privacy and data utility present in most privacy-preserving solutions [Dwo+06;

DR+14].

3 Vulnerability Profile Privacy 151

To protect the privacy of Client vulnerability profiles, we design an approach
based on a combination of k-anonymity [SS98; Sam01] and local differential pri-
vacy [Bas+17; Tan+17; Zhe+17]. A combination of the two approaches guarantees
that queries derived from Client vulnerability profiles are released only in large
enough batches that contain additional queries derived from statistically different
pseudo vulnerability profiles. This approach prevents the direct release of infor-
mation about subgroups and provides differential privacy guarantees by adding
pseudo-random noise (in the form of fake queries) to the genuine queries based
on individual Client vulnerability profiles.

This approach, adapted to the vulnerability recommender system described
in [Cob+18], allows us to substitute the privacy-utility trade-off with a privacy-cost
relation. Intuitively, larger proportions of noise accompanying genuine queries
lead to stronger privacy of the respective Client vulnerability profile. While in-
creasing computational cost of the recommender, this allows to proportionally
decrease the utility of information observed by the adversary, without utility loss
for the client.

3.1 k-anonymous Vulnerability Profiles

We next describe the mechanism for protecting the anonymity of queries derived
from Client vulnerability profiles. Our approach is based on two fundamental as-
pects: (1) issuing queries in large enough batches, and (2) mixing queries derived
from genuine Client vulnerability profiles (called genuine queries) with pseudo-
random noise expressed as queries derived from statistically different pseudo vul-
nerability profiles (called pseudo queries).

We next present the approach of issuing a single genuine query per batch. Each
Client vulnerability profile consists of exactly n different properties, where each
property describes the Client’s preference for a certain aspect of a vulnerability.
Preferences are represented as a vector p describing the Client profile, where each
individual property is denoted v;.

p={v1,v2,...,0,})

For example, a Client vulnerability profile may be built by ranking three dif-
ferent vulnerability properties: confidentiality impact, integrity impact, and avail-
ability impact. A client preference could be that the Client considers that vulner-
abilities affecting confidentiality have higher priority, while vulnerabilities with an
impact on integrity or availability have lower priority. A profile is then represented
as: {0.9,0.2,0.2}, where a higher value v; implies that a property is considered
more important.

To reduce the utility of information disclosed to the adversary through queries,
the pseudo queries should fulfill two requirements: (7) introduce sufhicient noise
regardless of the cardinality of the profile |p| and of the values of the elements
v; in the profile; (7) have the same dimensions and be indistinguishable from the

152 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

genuine query. Different from database anonymization approaches [SS98; Sam01;
Hol+17], low variability in the data set does not satisfy our privacy requirements,
since it leaks Client vulnerability profile data. Therefore we add a third condition
that the pseudo queries must satisfy, along with conditions (), (iZ) above: (iii)
the query data set should display high variability (or high standard deviation in
statistical terms).

Thus, on every period T', the Client submits a query (), to the Intermediary.
The Intermediary derives & — 1 pseudo queries (), that along with (), are sub-
mitted to the Recommender. The Recommender processes all of the queries and
returns k different responses based on the received queries. As a result, neither the
adversary observing the network, nor the potentially malicious Recommender are
aware which of the k (profile, response)-pairs belongs to the Client. Upon receiv-
ing k replies the Intermediary discards all pseudo queries (), and returns to the
Client the reply to query Q4. The variability of the k profiles is sufficiently large
to make it unfeasible to draw any conclusions about the contents of the genuine
profile. The size k — 1 is configurable, depending on the computational cost ac-
ceptable for the Recommender and the privacy guarantees requested by the Client.

Having described the Client vulnerability profile anonymization principles,
we next discuss the use of isolated execution to provide platform security guaran-
tees of the Intermediary.

3.2 Privacy Protection with Isolated Execution

The privacy-preserving mechanism described above can be implemented by any
component of the proposed architecture: Client, Intermediary, or Recommender
(see Section 2.3). A straightforward client implementation is possible; however,
this places a large load on the client and generate excessive network traffic. Alter-
natively, a client may choose to instead send only a single request to the interme-
diary. The intermediary is then responsible for sending multiple requests to the
Recommender. From the Client’s point of view, a trustworthy intermediary allows
to reduce external network traffic, since the intermediary can be placed close to
the recommender system. The privacy-preserving mechanism can also be imple-
mented by the Recommender provider itself, thus reducing the network latency
between the Intermediary and the Recommender to near zero. However, this is
incompatible with the honest-but-curious Recommender described in Section 2.3.

Trustworthy intermediary functionality can be implemented using the func-
tionality of a TEE. The TEE should support remote attestation, isolated execution,
and sealing of sensitive data. In the description below, a solution designed on In-
tel SGX is described, but we stress that alternative commodity TEEs may be used
instead. We consider a scenario with the following requirements:

* A malicious Intermediary or Recommender system should not be able to
know if a certain client profile is the genuine client profile for a particular

Client.

3 Vulnerability Profile Privacy 153

* The Client should be able to attest the integrity of the Intermediary before
sending sensitive data.

* The Recommender should be oblivious to the privacy-preserving measures
taken by the Intermediary: changes to the privacy preserving mechanism
in the Intermediary should not require any modifications of the Recom-
mender.

We propose a solution as depicted in Figure 3. The Client starts by attesting
the integrity of the Intermediary through remote attestation. During this stage,
the Client receives proof that the TEE of the Intermediary has not been tampered
with, and negotiates a shared secret S, which can be used to send encrypted data
to the TEE. The key S is confined within the TEE and cannot be read from the
outside.

TEE <

Y

Client Intermediary |5

Recommender

Figure 3: Proposed design with an Intermediary running in a TEE

Next, the Client either updates its client profile, or requests recommendations
from the Recommender. In both cases, the Client sends a single request to the
Intermediary, encrypted with the shared secret S. The TEE of the Intermediary
can then decrypt the request.

For a request to update the profile, the TEE generates K — 1 new pseudo
profiles, to be used as described in Section 3.1.

For a request for recommendations, the TEE looks up k different profiles, of
which only one is the genuine profile. These profiles are then used to generate k
queries to the Recommender. All k responses are then returned to the Intermedi-
ary. The Intermediary next sends all results into the TEE, which picks the result
corresponding to the genuine client profile. This result is encrypted with .S and
sent back to the Client, where it can be decrypted. This design achieves the fol-
lowing properties:

* The decrypted data with the genuine client profile is never available alone to
the Intermediary outside the TEE. Only the collection of k profiles is avail-
able, and it is not possible to distinguish the genuine profile from pseudo
profiles.

* Following the definition of a TEE, an entity on the outside can never read
data inside the TEE.

o If the adversary modifies the TEE, the attestation phase will fail, and no
sensitive data will be sent to the TEE.

154 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

* The Recommender remains unaware of the Intermediary and simply re-
ceives extra requests made with several different profiles.

Together, these properties fulfill the requirements described earlier in this section.
We will next describe implementation details in Section 4.

4 Implementation

To evaluate our proposed design and demonstrate its viability, we implemented a
proof-of-concept prototype. The implementation uses Intel SGX to provide the
TEE of the Intermediary, and was evaluated with hardware support for Intel SGX.

The implementation includes three major components: Client, Intermediary,
and Recommender, (see Figure 3). In this implementation our focus is the Client
and the Intermediary. We assume that the Recommender is already implemented,
but without any privacy-enabling technologies, as explained in Section 2.1 and
[Cob+18]. The three main features that the implementation must support are
remote attestation, profile management, and recommendation generation. We
next describe their implementation details.

4.1 Remote attestation

The first step before the Client can trust the Intermediary is to attest the Interme-
diary’s TEE, in this case an SGX enclave. The remote attestation implementation
uses the suggested design from Intel [Int18], using a modified Sigma protocol to
derive a shared secret in the attestation phase.

We next briefly describe the procedure (see [Intl8] for more details). First, the
Client starts the attestation process by contacting the Intermediary, which initi-
ates the remote attestation process inside the enclave. The Client proceeds by re-
trieving a signature revocation list from Intel Attestation Services (IAS), and sends
this to the enclave together with other data. The enclave proceeds by returning a
quote, which can then be verified by the Client. This verification is done by first
contacting IAS, to verify that the quote is made by an enclave on trusted hard-
ware. After this, the hash value of the enclave’s code can be read from the quote.
If this matches the expected value, the Client can be certain that the enclave has
not been tampered with.

After this point, both the enclave and the Client has a shared secret .S that can
be used to secure further communications. Note that this secret is only available
to the Client and the enclave, 7oz the Intermediary outside the enclave.

4.2 Profile Management

The profile management is located within the trusted enclave. This ensures that
its behavior can be verified by the Client, such that it does not leak information
to an attacker.

4 Implementation 155

- Py
_ Al -1 Py P -+ Pr—
E(uidg, pg)f || profile |
! storage transform
Client | ! based on
. diff(pg, p2)
TEE |\ o
Intermediary| “\p} p; - Pr_

Figure 4: Enclave profile management during profile update

Each client profile p;, has a corresponding id uid;, used in communication
between the different entities. Furthermore, for each genuine client profile py,
there are k — 1 pseudo profiles. Using a different set of pseudo profiles for each
genuine profile ensures that colluding clients cannot find pseudo profiles for other
clients. The profile management keeps a record over the mapping between genuine
and pseudo profiles, such that the same set of pseudo profiles is used during profile
update or recommendation generation for a specific genuine profile.

As the user’s preferences change, the profile stored in the enclave needs to be
updated. An overview of this is shown in Figure 4. During the profile update stage,
the Client sends an encrypted updated genuine profile pj, to the Intermediary.
The profile is decrypted inside the enclave, which then applies a transformation
function as described below. The transformation is applied to each one of the k—1
pseudo profiles. This ensures that an outside observer can only see that all profiles
have been updated, but still cannot know which one that is the genuine profile.

There are two main events in the life cycle of pseudo profiles: the initial pseudo
profile generation, and updates of the pseudo profile. First, when a new genuine
profile is created for the first time, £ — 1 new pseudo profiles must also be created.
Based on requirements listed in Section 3.1, the pseudo profiles should be indis-
tinguishable from a genuine profile. To achieve this during initial pseudo profile
generation, we select a profile such that its properties are distributed according the
distribution of each property’s value over all existing profiles, inspired by the work
on t-closeness [LLVO7]. This ensures that the newly generated pseudo profiles is
non-distinguishable from genuine profiles.

Second, when a profile should be updated, following the terminology from
Figure 4, we want to implement a diff () function that updates the pseudo pro-
files based on the update of the genuine profile. This function should: (7) hide
which property of the profile that was updated, and (7i) hide the exact value dif-
ference between the new and the old property. Without loss of generality, we can
assume that during update of a genuine profile py to its new value py, only a sin-

156 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

gle property v; of the profile is modified'.

To hide which property v; that is updated, for every pseudo profile, we ran-
domly select a property v; from that profile (1 < j < n), whose value is updated.
The result is that different properties are updated, and since an outside observer
does not know the genuine profile, it is not possible to find out which actual prop-
erty that was updated.

To hide the exact value difference between the old property v; and the new
property v, we suggest a solution similar to differential privacy [Dwo+06]. While
the genuine profile is updated to (the exact) new property value v}, noise is added
to the pseudo profile. The noise is based on the difference v; — v}, such that the
exact value of the difference is hidden. The distribution from which to draw the
noise may be varied, in our proof-of-concept we base it on the Laplace distribution
commonly used in e-differential privacy.

4.3 Recommendation Generation

E(uidg),cves p,,Cves
= - ,
P,, CVes ®
TEE = o1 3
Client 2 3
. [¢°]
Py, CVES 3
N = =]
Erg) &
Intermediary

Figure 5: Recommendation generation

We illustrate the flow for recommendation generation in Figure 5. When the
Client wishes to request recommendations, it sends a request to the Intermediary.
The request contains an encrypted id (uidg), and a list of CVEs to rank. The
enclave decrypts the id, and returns k different profiles to the Intermediary, outside
of the enclave. One of these profiles is the genuine client profile (p,), but to the
outside observer, all profiles are indistinguishable.

For each of the k profiles, the Intermediary sends one request to the Recom-
mender, which returns k different responses. The responses are forwarded to the
enclave which selects only response ry corresponding to the genuine user profile
Dg» encrypts it, and returns it to the Client.

An implementation must consider several aspects to avoid leaking informa-
tion. First, the order of profiles must be randomized, such that the position of
the genuine profile is not known. Second, even though the id and response is
encrypted, the size of the ciphertext may still leak information, if different user

'A single profile update modifying multiple properties can be converted to several consecutive
updates, each modifying a single property.

5 Evaluation 157

profiles and responses from the Recommender have different sizes. It is therefore
important for the enclave to ensure that all ids have identical size, as well as veri-
fying that responses from the Recommender do not differ in size. In practice, this
does not limit the functionality of the system: both the id and recommender re-
sponse can be padded inside the enclave to ensure equal size. Note that since it is
the communication between client and enclave that is padded, the Recommender
does not have to be modified.

5 Evaluation

To evaluate the performance overhead of the proposed privacy-enabling mecha-
nism, we measured the response time for recommendation generation.

Consider the setup in Figure 3, with each entity running on a different host,
connected to the same local network. The Recommender is an actual implemen-
tation of a recommender as described in [Cob+18], and the Intermediary’s TEE
is on a CPU with hardware support for Intel SGX. We performed the following
measurements. First, three random sets of CVEs were constructed, containing
30, 100, and 1000 different CVEs, respectively. Second, for each such set, we
perform a test without the Intermediary as a baseline; in this test the Client con-
nects directly to the Recommender, without any privacy protection. This can be
used as a reference when comparing to the other measurements. Third, again for
each set of CVEs, we performed five tests with different privacy levels, i.e. dif-
ferent values of k. Recall that k determines the number of profiles that are sent
to the Recommender, so for e.g. £ = 8, there is one genuine and seven pseudo
profiles being sent to the Recommender. Each test was repeated 100 times, and
the resulting mean, median, and standard deviation are presented in Table 1. Note
that the baseline measurement, in which the Client connects directly to the Rec-
ommender, is denoted by k set to none.

The evaluation of the prototype implementation highlights the relation be-
tween the privacy guarantees and the response time of the recommender system.
Requests to recommender systems for vulnerability prioritization are expected to
be sparse and potentially asynchronous. Therefore, we consider the increase in re-
sponse time detailed in Table 1 acceptable, considering the added benefit of data
privacy.

6 Related Work

In this paper we address the challenge of protecting the privacy of Client profiles
in a vulnerability recommender service. While this topic was not addressed earlier,
we base our approach on a rich body of privacy and anonymity research. We next
review the related work.

158 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

Table 1: Response times for recommendation generation for various number of CVEs and
various values of k

#CVEs k Mean (ms) Median (ms) St.dev (ms)

30 none 94.2 93.8 3.2
1 106.7 106.4 7.2
8 324.0 323.0 21.1
16 589.3 583.4 21.0
32 1117.6 1114.5 31.1
64 2154.7 2159.6 32.6
100 none 122.0 121.6 2.6
1 135.2 135.0 2.5
8 378.0 371.7 33.0
16 662.5 650.5 39.9
32 1206.7 1198.0 49.9
64 2281.7 2277.3 44.0
1000 none 442.6 441.6 5.5
1 463.6 462.9 6.5
8 813.4 777.5 108.6
16 1536.7 1502.8 153.1
32 2682.3 2661.1 136.1
64 4881.5 4836.1 154.9

6.1 Privacy for Recommender Systems

McSherry etal. described the design and implementation of a platform for privacy-
preserving data analysis for SQL-like queries [MMO09]. While this approach al-
lows to write applications that provide privacy guarantees in an honest-but-curious
threat model, it is not backward-compatible with existing applications and re-
quires native implementations in the Privacy Integrated Queries platform. Abadi
et al. described algorithmic techniques for learning and a refined analysis of pri-
vacy costs within the framework of differential privacy [Aba+16]. The approach
is geared towards training deep neural networks with non-convex objectives. The
solution enables this functionality under a modest privacy budget and at a man-
ageable cost in software complexity and model quality. However, the approach is
not suitable for the honest-but-curious threat model, since it relies on a trustwor-
thy implementation of the framework on the data processing end. Our approach
introduces a privacy-protection layer that is independent of the implementation
of the data processing (in this case a recommender system) and can therefore be
applied to a wide range of applications.

Ohrimenko et al. described an approach for oblivious multi-party machine

7 Conclusion 159

learning on trusted processors [Ohr+16]. The approach relies of a set of custom ma-
chine learning algorithms for trusted processors that make use of general-purpose
oblivious primitives. For further security, the multi-party machine learning mech-
anism is implemented in trusted execution environments (namely Intel SGX en-
claves). The Prochlo [Bit+17] implementation likewise uses Intel SGX enclaves to
implement the Encode, Shuffle, Analyze architecture for privacy-preserving soft-
ware monitoring. The architecture is tailored for anonymizing data streams from
many heterogeneous sources and allows to expose anonymized data to third par-
ties. In this paper, we similarly rely on SGX enclaves to create trusted execution
environments to run an implementation for query anonymization. We address a
different use case, where the privacy of a single profile using the recommender
system is preserved against an adversary capable to observe the queries and the
internals of the recommender system.

6.2 Vulnerability Selection

Vulnerability detection precedes and is closely related to vulnerability selection.
In [Sho+17] the authors address the challenge of shifting vulnerability detection
from a human-centric to a computer-centric approach. In particular, the paper
presents a design and implementation for a human-assisted automated vulner-
ability analysis system. VULCON (VULnerability CONtrol) is a vulnerability
management strategy described in [Far+18]. It is based on two metrics, namely
time-to-vulnerability remediation and total vulnerability exposure. Based on in-
puts such as vulnerability scan reports, metadata about the discovered vulnerabili-
ties, asset criticality, and personnel resources VULCON prioritizes vulnerabilities
for patching. Both vulnerability detection and vulnerability selection may require
anonymity and privacy guarantees for the Client profiles in privacy-sensitive set-
tings. Our work addresses this by describing a privacy protection mechanism for

Client vulnerability profiles.

7 Conclusion

Automated vulnerability prioritization and patch selection become increasingly
necessary in order to cope with the growing complexity of corporate software en-
vironments. Earlier research on recommender systems for vulnerability prioritiza-
tion and patch selection did not address the privacy of client vulnerability profiles.
In this work we presented a privacy-preserving mechanism that helps protect client
vulnerability profiles in the context of recommender systems for vulnerability pri-
oritization and patch selection; to the best of our knowledge, this is the first work
addressing this aspect. We implement a prototype of the proposed solution using
Intel SGX enclaves and a functioning recommender system for vulnerability pri-
oritization and patch selection. Our evaluation of the prototype implementation
reveals that the response time increases along with the proportion of pseudo queries

160 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

issues with each request, but remains acceptable considering that requests are ex-
pected to be sparse. The evaluation result highlights that the proposed mechanism
is practical and can complement existing recommender systems for vulnerability
prioritization and patch selection.

Acknowledgment

This work was financially supported by the Swedish Foundation for Strategic Re-
search, grant RIT17-0035.

References

[Aba+16] M. Abadi et al. “Deep Learning with Differential Privacy”. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS °16. Vienna, Austria: ACM, 2016,
pp- 308-318.

[Aggl6] C. C. Aggarwal. Recommender Systems. Springer, 2016.

[Ana+13] I. Anati et al. “Innovative technology for CPU based attestation
and sealing”. In: Proc. 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy. HASP °13.
Tel-Aviv, Israel: ACM, June 2013, p. 10.

[Bas+17] R. Bassily et al. “Practical Locally Private Heavy Hitters”. In:
Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017, pp. 2288-2296.

[Bit+17] A. Bittau et al. “Prochlo: Strong Privacy for Analytics in the
Crowd”. In: Proceedings of the 26th Symposium on Operating
Systems Principles. SOSP °17. Shanghai, China: ACM, 2017,
pp- 441-459.

[Boz+10] M. Bozorgi et al. “Beyond Heuristics: Learning to Classify
Vulnerabilities and Predict Exploits”. In: Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’10. Washington, DC, USA: ACM, 2010,
pp- 105-114.

[Bra+19] E Brasser et al. “SANCTUARY: ARMing TrustZone with
User-space Enclaves”. In: Proc. 2019 Network and Distributed
Systems Security Symposium. NDSS19. 2019.

[Cob+18] A. Cobleigh et al. “Identifying, Prioritizing and Evaluating
Vulnerabilities in Third Party Code”. In: IEEE 22nd International
Enterprise Distributed Object Computing Workshop. IEEE, 2018.

References

161

[DR+14]

[Dwo+06]

[Far+18]

[Fre+10]

[Git]

[Hol+17]

[Int18]

[LLVO07]

[McK+13]

[McK+16]

C. Dwork, A. Roth, et al. “The algorithmic foundations of
differential privacy”. In: Foundations and Trends® in Theoretical

Computer Science 9.3—4 (2014), pp. 211-407.

C. Dwork et al. “Calibrating Noise to Sensitivity in Private Data
Analysis”. In: Theory of Cryptography. Betlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 265-284.

K. A. Farris et al. “VULCON: A System for Vulnerability

Prioritization, Mitigation, and Management”. In: ACM Trans.
Priv. Secur. 21.4 (June 2018), 16:1-16:28.

S. Frei et al. “Modeling the security ecosystem-the dynamics of
(in) security”. In: Economics of Information Security and Privacy.
Springer, 2010, pp. 79-106.

GitHub. About security alerts for vulnerable dependencies.
https://help.github.com/en/articles/about-security-
alerts-for-vulnerable-dependencies.

N. Holohan et al. “(k, €)-Anonymity: k-Anonymity with
e-Differential Privacy”. In: CoRR abs/1710.01615 (2017). arXiv:
1710.01615.

J. M. (Intel). Code Sample: Intel Software Guard Extensions Remote
Attestation End-to-End Example.
https://software.intel.com/en-us/articles/code-
sample-intel-software-guard-extensions-remote-
attestation-end-to-end-example. July 2018.

N. Li, T. Li, and S. Venkatasubramanian. “t-Closeness: Privacy
Beyond k-Anonymity and I-Diversity”. In: 2007 IEEE 23rd
International Conference on Data Engineering. Apr. 2007,

pp- 106-115.

F. McKeen et al. “Innovative Instructions and Software Model for
Isolated Execution”. In: Proc. 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. HASP
’13. Tel-Aviv, Israel: ACM, June 2013, 10:1-10:1.

F. McKeen et al. “Intel Software Guard Extensions (Intel SGX)
Support for Dynamic Memory Management Inside an Enclave”.
In: Proc. 2016 Hardware and Architectural Support for Security and
Privacy. HASP ’16. Seoul, Republic of Korea: ACM, June 2016,
10:1-10:9.

https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://arxiv.org/abs/1710.01615
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example

162 Paper V: Privacy-enabled Recommendations for Software Vulnerabilities

[MMO09]

[Mof+18]

[Ohr+16]

[SamO1]

[Sho+17]

[SKO08]

[SS98]

[Tan+17]

[Wan+17]

E McSherry and I. Mironov. “Differentially Private Recommender
Systems: Building Privacy into the Netflix Prize Contenders”. In:
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’09. Paris, France:
ACM, 2009, pp. 627-6306.

S. Mofrad et al. “A Comparison Study of Intel SGX and AMD
Memory Encryption Technology”. In: Proceedings of the 7th
International Workshop on Hardware and Architectural Support for
Security and Privacy. HASP °18. Los Angeles, California: ACM,
2018, 9:1-9:8.

O. Ohrimenko et al. “Oblivious Multi-Party Machine Learning
on Trusted Processors”. In: 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug.
2016, pp. 619-636.

P. Samarati. “Protecting respondents identities in microdata
release”. In: JIEEE Transactions on Knowledge and Data Engineering
13.6 (Nov. 2001), pp. 1010-1027.

Y. Shoshitaishvili et al. “Rise of the HaCRS: Augmenting
Autonomous Cyber Reasoning Systems with Human Assistance”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. Dallas, Texas, USA: ACM,
2017, pp. 347-362.

V. Sridharan and D. R. Kaeli. “Quantifying Software
Vulnerability”. In: Proceedings of the 2008 Workshop on Radiation
Effects and Fault Tolerance in Nanometer Technologies. WREFT *08.
Ischia, Italy: ACM, 2008, pp. 323-328.

P. Samarati and L. Sweeney. “Generalizing Data to Provide
Anonymity when Disclosing Information (Abstract)”. In:
Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. PODS *98. Seattle,
Washington, USA: ACM, 1998, pp. 188—.

J. Tang et al. “Privacy Loss in Apple’s Implementation of
Differential Privacy on MacOS 10.12”. In: CoRR abs/1709.02753
(2017). arXiv: 1709.02753.

W. Wang et al. “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. Dallas, Texas, USA: ACM,
2017, pp. 2421-2434.

https://arxiv.org/abs/1709.02753

References 163

[XSL16] B. C. Xing, M. Shanahan, and R. Leslie-Hurd. “Intel Software
Guard Extensions (Intel SGX) Software Support for Dynamic
Memory Allocation Inside an Enclave”. In: Proc. 2016 Hardware
and Architectural Support for Security and Privacy. HASP ’16.
Seoul, Republic of Korea: ACM, June 2016, 11:1-11:9.

[Zhe+17] W. Zheng et al. “Opaque: An Oblivious and Encrypted
Distributed Analytics Platform”. In: 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). Boston,
MA: USENIX Association, 2017, pp. 283-298.

Not So Greedy: Enhanced
Subset Exploration for
Nonrandomness Detectors

Abstract

Distinguishers and nonrandomness detectors are used to distinguish ciphertext
from random data. In this paper, we focus on the construction of such devices
using the maximum degree monomial test. This requires the selection of certain
subsets of key and IV-bits of the cipher, and since this selection to a great extent
affects the final outcome, it is important to make a good selection. We present
a new, generic and tunable algorithm to find such subsets. Our algorithm works
on any stream cipher, and can easily be tuned to the desired computational com-
plexity. We test our algorithm with both different input parameters and different
ciphers, namely Grain-128a, Kreyvium and Grain-128. Compared to a previous
greedy approach, our algorithm consistently provides better results.

1 Introduction

Stream ciphers are symmetric cryptographic primitives which generate a pseudo-
random sequence of digits, called the keystream, which is then combined with the
plaintext message to produce a ciphertext. To generate the keystream, a public
initialization vector (IV) and a secret key are used. It is important that an attacker

Linus Karlsson, Martin Hell, and Paul Stankovski. “Not So Greedy: Enhanced Subset Exploration
for Nonrandomness Detectors”. In Information Systems Security and Privacy, ICISSP 2017. CCIS
Vol. 867, pp. 273-294, Springer.

166 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

cannot use the public IV to deduce information about the keystream, since this
would put the encrypted message at risk.

To prevent such an attack, the key and IV are mixed during an initializa-
tion phase, before the stream cipher produces actual keystream. This initialization
phase consist of a set of initialization rounds, during which the output of the ci-
pher is suppressed.

A cipher needs to have an adequate amount of initialization rounds. Too many,
and the cipher will have poor initialization performance, too few and an attacker
may be able to perform an attack, e.g., a chosen-IV attack.

In this paper we will look into the design of distinguishers and nonrandomness
detectors to perform cryptanalysis of different ciphers. The goal of such devices is
to look at data and then determine whether the data is random data, or data from
a specific cipher. Recall that for a good cipher, the keystream should be pseudo-
random, so it should be hard to construct such a detection device, since data from
a cipher should appear random to an outside observer.

Distinguishers and nonrandomness detectors differs in what degree of control
an attacker has over the input. In a distinguisher, the key is fixed and unknown
to the attacker, only the IV can be modified. In a nonrandomness detector, an
attacker has more control, and can modify both key and IV bits.

The design of distinguishers and nonrandomness detectors has previously been
discussed in the literature. Previous work such as [EJS07] has considered the
design of such devices by using a test called the Maximum Degree Monomial
(MDM) test. This test looks at statistical properties of a cipher to find weaknesses.

This test requires selection of a subset of the cipher’s key and IV bits, which
can be selected using, for example, a greedy algorithm, as described in [Stal0].

We build upon this previous work and propose an improved, generalized, al-
gorithm which outperforms the greedy algorithm in finding suitable subsets. We
also implement and test our algorithm, and present new results on the stream ci-
phers Grain-128, Grain-128a and Kreyvium.

This paper is an extended and revised version of [KHS17]. The major novelties
are analysis of one more cipher (Kreyvium), a new test which investigates the effect
of optimal starting subsets, and a more detailed descriptions of our algorithm.

The paper is organized as follows. In Section 2 we present some required
background, which is then used when describing our new algorithm in Section 3.
Results are presented in Section 4, which is then followed by a discussion of related
work in Section 5. Section 6 concludes the paper.

2 Background

In this paper we will mainly focus on the analysis of the two stream ciphers Grain-
128a and Kreyvium. This selection of ciphers has been made since they share some
interesting properties. They are both based on ciphers from the final eSTREAM
portfolio (Grain vl and Trivium, respectively), but modified to have 128-bit keys.

2 Background 167

g /

M

—{=]

Y
I3 }
A

Figure 1: Overview of Grain-128a

Both ciphers also update their internal state relatively slowly—a small fraction of
the internal state is modified in each clock cycle. This requires both ciphers to
have many initializations rounds.

For completeness, we start with a brief description of these two ciphers. After
this, in the rest of this chapter, we discuss the Maximum Degree Monomial test
in more detail.

2.1 Grain-128a

The Grain-family of ciphers consist of a progression of multiple ciphers, starting
with Grain vl [HJMOG], which is included in the final eSSTREAM portfolio of
ciphers. This was extended into a 128-bit key version as Grain-128 [Hel+06], and
finally to the current version Grain-128a [Agr+11].

Grain-128a is a stream cipher with a 128 bit key and a 96 bit IV. It support two
modes of operations, with or without authentication. For brevity, the following
description will focus on the non-authenticated mode. Refer to the original paper
for an extended description. The cipher is constructed with three major parts: one
LFSR of size 128, one NFSR of size 128, and one pre-output function h combining
values from the LFSR and the NFSR. An overview of the cipher can be seen in
Figure 1.

The functions f(x) and g(z) are the feedback functions for the LFSR and the
NEFSR respectively. They are defined as follows:

f(l') =14+ .’1332 4 11347 + 1’58 + 1‘90 + 1‘121 + $128

and

g(x) =14+ .%‘32 + .%'37 + .%,72 + x102 + 1,128 + x44:c60 + x61a:125 + .%'631'67

+ 1'69%‘101 + x80$88 + xllelll + 1,1151,117 + x46x50x58

103.7}104.7}106 33,.35,.36 .40

+x + x>

168 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

The function h(z) is defined as follows, where s; and b; correspond to the ith
state variable of the LFSR and the NFSR respectively:

h = b12sg + 513820 + bo5S42 + Se0S79 + b12095594
Finally, the output 2 from the cipher is constructed as:
2z = h 4+ sg3 + by + by + bgg + bas + bea + b7z + bsg

The initialization of the cipher is as follows. At first the NFSR is filled with
the 128 key bits, and then the LFSR is filled with the 96 IV-bits. The remaining
32 bits of the LFSR are filled with ones, except the final bit which is set to zero.
After this, the cipher is clocked 256 times, during which the output is suppressed
and instead fed back and XORed with the input to both the NFSR and LFSR.
After this, the cipher is ready and starts to produce keystream.

2.2 Kreyvium

Kreyvium [Can+16] is based on another eSTREAM finalist, namely Trivium [De
06]. Trivium is notable for its simplistic design. It has an 80 bit key and an 80 bit
IV. The authors of Kreyvium modifies the construction by increasing this to 128
bit for both the key and the IV.

Kreyvium’s internal state consists of five different registers, of sizes 93, 84, 111,
128, and 128 bits. In the following brief description, we will call them a, b, ¢, IV™*,
and K, respectively. The first three registers are the same as in Trivium, while
the latter two are added in Kreyvium. An overview of the cipher can be found in

Figure 2.
Following the notation of the original paper, the registers a, b, and ¢ are num-
bered s1, ..., s93, followed by sg4, . .., s177, and finally s17s, . .., S2gs, respec-

tively. Then the output z can be expressed as:

Z = S66 + S93 + S162 + S177 + S243 + Sass + K|

For every clock, each LFSR is shifted one step, and the following values are
shifted in for each register:

51 = 543 + s288 + K + 52865287 + S69
S04 = Se6 + 593 + S91592 + s171 + IV
S178 = S162 + S177 + S1755176 + S264
KT27 = Kf)k
IV1*27 = IVO*

2 Background 169

A%

‘\

a/ J‘
A

b » ‘\‘ F‘\ > ‘\ ZV
A A A
Y

¢ 9

Figure 2: Overview of Kreyvium

The initialization of the ciphers is as follows. The a register is initialized with
the first 93 key bits. The b register is intialized with the first 84 IV bits. The ¢
register is initialized with the remaining IV bits, followed by all ones, except the
final bit which is a zero. The K* register is filled with the key, and the V™ register
is filled with the IV. After this the cipher is clocked 1152 times, during which the
output is suppressed. After this, the cipher starts generating keystream.

2.3 Maximum Degree Monomial Test

The maximum degree monomial test was first presented in [EJSO7] and described
a clean way to detect nonrandomness by looking at the cipher output.

Considering an arbitrary stream cipher, we can consider it as a black box with
two inputs, and one output. The input is the key K and the initialization vector
(IV) V respectively, while the output is the generated keystream. We consider
the concatenation of the key K and the IV V' as a boolean space B of dimension
b=|K|+|V]|.

Any Boolean function g over a boolean space B can be described by its Alge-
braic Normal Form (ANF)

g(x1, e, ... 2p) = co+ 121 + a2 + ...+ CpTIT ... Tp

where the coefficients ¢; are either 0 or 1, thus describing if the term is included
in the ANF or not. For the function ¢ above, the last term with coefficient ¢,
describes the maximum degree monomial. If ¢;, is zero, we say that the maximum
degree monomial does not exist, while if ¢, is 1, we say it does exist. We note that

170 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

for a randomly chosen Boolean function g, we would expect the maximum degree
monomial to appear with a probability of %

We are interested in finding out whether or not the maximum degree mono-
mial exists in the ANF of the Boolean function of the first keystream bit. The
rationale behind this is that intuitively, the maximum degree monomial tells us
something about the mixing of the input to the cipher. Since the maximum de-
gree monomial is the product of all inputs of the Boolean function, we expect to
see it only if all inputs have been mixed.

It is well known that according to the Reed-Muller transform, the coefficient
of the maximum degree monomial can be found simply by XORing all the entries
in the truth table of a Boolean function as

P 9@ M

xe{0,1}°

where g(x) is a Boolean function. Thus all possible values for the input set is
generated, and for each input value the function is evaluated.

We will use this test to analyze the required amount of initialization rounds
of a stream cipher. The designers of a stream cipher need to select how many
initialization rounds to perform: too few, and it may be possible to attack the
cipher, too many, and the performance hit will be large.

If we consider the first bit of keystream from a stream cipher as a Boolean
function, we can choose to sum over this function in Equation 1 above. The input
x would then correspond to the input set of key and IV bits.

Instead of only looking at the first bit of real keystream, the idea can be ex-
tended such that a modified version of the cipher is considered. In the modified
version, we also look at the cipher’s output during its initialization rounds, out-
put which is normally suppressed. Assuming a cipher with [initialization rounds,
we denote the ith initialization round output function as f;(x), thus giving us a

fil@), fo(x), ... filz) .

[functions

vector

Thus, instead of only looking at the ANF and finding the maximum degree
monomial of a single function (2o before), we now look at [different boolean
functions, and for each of the functions, we find the coefficient of the maximum
degree monomial. Such a sequence would have a format like

01100101...101

[coefficients

where each individual bit is the maximum degree monomial coeflicient for its cor-
responding function f;. We call this sequence of coefficients the maximum degree
monomial signature, or MDM signature, following the terminology in [Stal0].

2 Background 171

Since the keystream is a pseudo-random sequence of digits, the keystream
produced by an ideal stream cipher should, to an outside observer, be indistin-
guishable from a random stream of bits. This means that if we look at each output
bit function f;(), it should appear to be a random function f; : B — {0,1}.
As noted earlier, for a random Boolean function, we expect the maximum de-
gree monomial to exist with probability 3. Therefore, we expect the coefficients 0
and 1 to appear with equal probability, and for an ideal cipher, we expect to see a
random-looking MDM signature.

However, if the input space B is large, clearly the construction of a MDM sig-
nature will result in too many initialization of the cipher to be feasible. Therefore,
we can only consider a subset S of the input space B. The remaining part, B\ S,
is set to some constant value, in this paper we selected it to be zero.

2.4 Finding the Subset S

The selection of the subset S turns out to be a crucial part of the MDM test. We
will soon see that depending on the choice of S, the resulting MDM signature
will vary greatly.

Consider a subset S of key and IV bits for the stream cipher Grain-128a
[Agr+ll], Choosing S as key bit 23, and IV bits 47, 53, 58, and 64, we get the
following MDM signature:

000...000111...
187

Looking at the initial sequence of 187 adjacent zeros, out first conclusion is that
this does not appear to be a random-looking sequence. After this, we will however
start to see ones and zeros in a more mixed fashion. From this we can intuitively
say the it appears as if 187 initialization rounds are not enough. However, Grain-
128a is designed with 256 initialization rounds in a non-modified implementation,
and thus it appears as if the designers have chosen a sufficiently high amount of
initialization rounds.

To more concisely describe the result above, we state that we find nonrandom-
ness in 187 out of 256 initialization rounds. We will use this terminology through-
out the paper. Worth noting is also that this is a nonrandomness result, since we
have included both key and IV bits as a part of the subset S.

From the description above, it should not come as a surprise that our goal now
is to maximize the length of the initial sequence of zeros we can find in the MDM
signature. The ultimate goal is of course to find nonrandomness in #// initialization
rounds, at which point it may be interesting to look for it in the actual keystream
of an unmodified cipher.

The selection of what bits to include from B into the subset .S is important.
The composition of S will greatly influence the resulting MDM signature. Four
examples can be found in Table 1.

172 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

Table 1: The number of initial zeros in the MDM signature for four different subsets S for

Grain-128a
K v rounds out of 256
{} {1,2,3,4,5} 107
i {91,92,93,94,95} 124
{23} {47,53,58, 64} 187
{1,2,3,4,5} {} 109

From the table above, we can clearly see that the choice of S is crucial. For
these examples, we have selected a subset size of five, i.e. |S| = 5, and included
both key and/or IV bits in .S. The third row, where we find 187 consecutive zeros,
is actually the optimal result for a subset of size 5. Calculating the optimal result
is however not feasible as the subset grows larger. For the general case, where the

. . . B o
input space is B and the subset is S, we would have to test (‘l Sl‘) combinations.

Again, using Grain-128a as an example, that would correspond to (2‘?‘1) combina-
tions, since Grain-128a has 96 IV bits and 128 key bits.

2.5 Greedy Approach

Since the selection of the subset S is important, we now turn our attention to
algorithms used to construct such a subset. Previous work, such as [Stal0], has
proposed to use a greedy algorithm to find such a subset. The greedy approach
can, in short, be described through the following steps, which results in a subset
of a desired size:

1. Find an optimal starting subset of a small size (possibly empty, making this
step optional)

2. Add the n bits which together produce the highest number of zero rounds
to the current subset.

3. Repeat step 2 until a subset of the wanted size m is found.

To make the algorithm even clearer, consider the following example where we
start with the optimal subset of size five described earlier in Table 1. A few steps
of the greedy algorithm, with n = 1, would then look like this:

3 Improved Algorithm 173

io: K ={23} IV = {47,53,58,64}

i K =1{23} IV = {47,53,58,64, 12}
iy K ={23,72} IV = {47,53,58,64, 12}
is: K ={23,72,31} IV = {47,53,58,64,12}

ig: K =1{23,72,31,107} IV = {47,53,58,64,12}

The algorithm, in iteration ¢ starts with the optimal subset of size 5. In iter-
ation 7; all possible remaining bits are tried, and the best bit, i.e. the one giving
the longest initial sequence of zeros, is selected and included in the subset, in this
case IV bit 12. The algorithm then repeat the same step for all remaining itera-
tions until a subset of the desired size is found, in this example |S| = 9.

This greedy algorithm has the same drawbacks as for greedy algorithms in
general-they may not find the global optimum, but rather get stuck in a local
optima, thus resulting in a poor selection of |S.

3 Improved Algorithm

Considering the possible issues of the greedy algorithm presented in the previous
section, we propose a more general solution which can achieve better results. The
main idea to solve this efficiency problem is to extend the naive greedy algorithm
to examine more possible paths.

Rather than only considering the single best candidate in each iteration, our
improved algorithm will store and explore a multitude of possible paths. The
rationale behind this approach is that the second best candidate in one iteration
may be better in the following iteration of the algorithm, when more bits are to
be added.

Increasing the number of explored candidates in each step of the algorithm will
of course increase the computational complexity of the algorithm. We will, how-
ever, later derive the an expression for calculating the total computational effort
required for certain parameters. In this way, we can easily estimate the computa-
tion time required.

The algorithm can briefly be described as follows: The algorithm starts with
either an optimal set of candidates, or an empty set. Each member of set is called
a candidate, and every candidate is in itself a subset of key and IV-bits. For each
candidate, the algorithm now tries to find the best bits to add, to maximize the
initial sequence of zeros in the resulting MDM signature. This is done for each of
the original candidates, which means that this generates several new sets of candi-
dates. If this is repeated, the number of candidates clearly will grow to unmanage-
able numbers. Therefore, the algorithm limits the resulting set of new candidates
with some factor.

174 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

U
—

(2,16 , 86]
Jid | 2516, 55

merge, sort, reduce

n;
PN
SR L
kisiaid | 3 : 69 8,43, 27 cokiciai ki] : 43 : 27
g
—
(32,69, 5]

32,69, 8

Figure 3: One step of our improved algorithm [KHS17]

A more formal and detailed description of the algorithm is described below.
A description in pseudo-code can be found in Algorithm 1 and Algorithm 2. The
algorithm is parametrized by three different parameter vectors: o, k, and n. We
also provide a graphical presentation of one iteration of the algorithm in Figure 3,
which we will refer to in the more detailed, textual, description below:

1. Consider a set of candidates from a previous iteration, or from an optimal
starting set. If this is the first iteration, it is also possible to start with a
completely empty subset of key and IV bits. In that case the algorithm
starts with a single candidate, where the MDM signature is calculated with
all key and IV bits set to zero.

2. For each candidate in the list, the algorithm adds the k; best n; new bits
and store them in a new list. Note that there now exists one such new list
for each candidate in the original list.

3. Merge all lists, sorting by the number of zeros in the MDM signature. This
givesalistof kgavg . . . ki—10a—1k; items, since there were koovg . . . kj—10i—1
candidates in the beginning of this iteration, and each one has now resulted
in k; new candidates.

4. Finally, reduce the size of this merged list with the factor o; (0 < a; < 1.0),
limiting the size of the combined list to koo . . . ki—1—1k;0y items. If
this step is omitted, or if c; is set to 1.0, the number of candidates will grow
exponentially.

3 Improved Algorithm 175

5. Repeat from step 1 until a subset S of the wanted size has been found.

We earlier stated that this improved algorithm was a more general approach
compared to the naive greedy algorithm described in Section 2.5. Using our new,
improved algorithm and its input parameters k, m, and o, we can express the
previous greedy algorithm’s behavior as a specific set of input parameters, namely
a = [1.0,1.0,...]), k = [1,1,...], and n = [n,n,...]. Thus our improved
algorithm is a generalization of the previous algorithm, with many more degrees
of freedom.

Algorithm 1 — SlightlyGreedy [KHS17]

Input: key K, IV V, bit space B, maximum subset size m, vector k,
vector 71, vector &
Output: subset S of size m.
So = {0}
/* The set Sy contains a single empty subset */
for (eachi € {0,...,m —1}) {

for (eachc € S;) {

L. = FindBest(K,V, B, ¢, ki, n;);

}

Si+1 = concatenate(all L. from above);
sort ;41 by the number of consecutive zeros in the MDM signature;
reduce the number of elements in S;11 by a factor a;

}

return S,,,;

3.1 Computational Cost

The improved algorithm may have a greater computation cost compared to the pre-
vious greedy algorithm, because it considers more candidates. The computational
cost will depend on the input parameter vectors, since they affect the amount of
candidates explored.

The total computational cost C' is expressed as the number of initializations
required. The cost is expressed according to the following function, from [KHS17],
where c is the number of iterations required (¢ = |k| = |n| = |a), and b is the
bit space size b = |B|.

I
—

c i ' b o i.—l) i—1
Cb,c,km,) = o < %2:0 nj) 11 %e 2
(2]:0

i

Il
=)

176 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

Algorithm 2 — FindBest [KHS17]

Input: key K, IV V, bit space B, current subset ¢, number of best subsets
to retain k, bits to add n
Output: k subsets each of size |c| + n.

/* let (2) denote the set of all k-combinations of a set S. */

S =10
for (each n-tuple {b1,...,by} € (BT}C)) {
z = number of initial zeros using subset ¢ U {b1, ..., by };
if (z is among the k highest values) {
add cU {by,...,b,} t0 S;
reduce S to k elements by removing element with lowest z;
}
}

return S;

The expression can be derived using combinatorics. In the expression, the
power of two is related to the size of the different subsets S—a large subset re-
quires more initializations of the cipher. The binomial coeflicient is the number
of possible subsets we can form given the current iteration’s n;. Finally, the final
product is needed because the algorithm reduces the number of candidates in each
iteration using the factors in . Clearly, in practice, the actual running time is
also dependent on other factors, such as the cipher we are running the algorithm
on.

As a special case of the expression in Equation 2, an expression for the previous
greedy algorithm can be derived. Recall that this algorithm had a constant n,
and since it only considered the best candidate in each iteration, both k and o
are all ones. Under these constraints, the expression can more concisely be given

as [KHS17]:

c—1 .
C(b,c,n) Z[2"Z+1 < _:'Z)] (3)

4 Results

To get any results from our proposed algorithm, the choice of parameters must first
be discussed. The algorithm is parametrized by the parameter vectors k, n, and
a. In this section we will explore and investigate how the choice of parameters

4 Results 177

affect the final result of our algorithm. These new results will be compared to the
previous greedy algorithm as a baseline.

The greedy algorithm only had one degree of freedom, n, while the improved
algorithm has many more. We have performed a significant amount of simula-
tions, on several different ciphers, to be able to present results on how the choice
of parameters affect the results of the algorithm.

The tests have been performed on the stream ciphers Grain-128a [Agr+11],
Kreyvium [Can+16], and to some extent Grain-128 [Hel+06]. For reference, the
exact parameters used for each result presented below are available in the Appendix
of this paper.

4.1 Tuning the Greediness

To get a feeling for how the different parameters affect the result, we start by vary-
ing the two parameter vectors k and o, while keeping n consistent, and equal
to an all-one vector. While k and o gives almost unlimited possibilities, we have
opted for the following simulation setup.

For every test case, a given iteration ¢ will have the same amount of candidates,
which makes the computational complexity identical between the different test
cases. The input vectors k and a will of course be different for the different test
cases, which in turn mean that even if the amount of candidates is the same, the
actual candidates will vary between the tests. By designing the test this way, we
wish to investigate how this difference in candidate selection affect the final result
of the algorithm.

Recall that k; govern how many new candidates we generate from a previous
iteration’s subsets. A high k; and low c; means that we may end up with several
candidates that have the same “stem”, i.e. they have the same origin list. If we
lower k; and instead increase ov; we will get a greater mix of different stems, while
still maintaining the same amount of candidates for the iteration—in a sense the
greediness of the algorithm is reduced. Thus, we want to test some different trade-
offs between the two parameters. In the results below, we name the different test
cases as a percentage value of the total amount of candidates for each round. Asan
example, if the total number of candidates in a given round is 1000, we could se-
lect a k; of 200, and a corresponding a; of 0.005, which gives us 1000 candidates
for the next round as well. We call this particular case 20 %-£ since k; is 20 % of
the candidates for the round.

As mentioned earlier, the simulations have been performed on different ci-
phers, in this case Grain-128a and Kreyvium. We have tried several combinations
of k and o as can be seen in the plot in Figure 4, which includes one plot for
each cipher. Note that Grain-128a has 256 initialization rounds, while Kreyvium
has 1152 initialization rounds. The greedy algorithm is also included as a reference.
Note that the greedy algorithm will, due to its simplistic nature, have a lower com-
putational complexity since it only keeps one candidate in each iteration. To be

178 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

able to compare the results based on computational complexity, we have plotted
the graph based on logarithmic complexity rather than subset size. The complex-
ity is calculated using Equation 2, and the natural logarithm is then applied on
this value, so that a reasonably scaled plot is produced. This graph can be seen in
Figure 5, for the same ciphers as above. The maximum values for each case is also
available in Table 2.

From the results we note that a too low k seems to lower the efliciency of the
algorithm. The reason for this is probably that a too low k forces the algorithm
to choose candidates from lists with lower value. These candidates are then poor
choices for the upcoming iterations. We also note that our improved algorithm
consistently gives better results than the previous greedy algorithm.

Table 2: Maximum length of initial sequence of zeros in MDM signature when varying k
and «, expressed as actual count, and percentage of total initialization rounds

Grain-128a Kreyvium
Count Percentage Count Percentage
Greedy 187 73.0 862 74.8
20 %-k 203 79.3 896 77.8
0.5 %-k 198 77.3 876 76.0
0.2 %-k 192 75.0 877 76.1
min-k %-k 190 74.2 866 75.2

rounds
rounds

100

- greedy - greedy
50 | |—— improved (20%-k) —— improved (20%-k)
[| 05%k

0.2%-k 0.2%-k
- min-k o min-k

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
bit set size bit set size

(a) Grain-128a (b) Kreyvium

Figure 4: Varying k and «, with n; = 1. Thick dotted black line is the greedy baseline.

4.2 Varying the Number of Bits Added in Each Iteration

In the previous section, a fixed 12 was used throughout all tests. In this section, we
will instead focus on the input parameter vector 1 and see how different vectors

4 Results 179

1000 -

800 | {'

600

200 -

150

rounds
rounds

100 -

[—— p—"
50 |- | —— improved (20%-k) —— improved (20%-k)
- 0.5%k 200 [| 0,50k

0.2%k 0.2%-k
~+r min-k - min-k

0
25 26 27 28 29 30 31 32 33 26 27 28 29 30 31 32 33
log(complexity) log(complexity)

(a) Grain-128a (b) Kreyvium

Figure 5: Varying k and «, with n; = 1. Thick dotted black line is the greedy baseline.
The z-axis scaled according to logarithmic computational complexity.

affect the result of the algorithm. Recall that this vector decides how many bits
that is added to the subset in each iteration.

Intuitively, we expect a higher value of a single n; to yield better results, since
this also reduces the risk to get stuck in a local optima. However, having a large,
constant 7; in all iterations, as explored in [Stal0], means that later iterations will
be require very heavy computations. We therefore explore three different variants,
where the vector n contains decreasing values of n;. These results are then com-
pared to the previous greedy approach where a constant n of different values where
used throughout the whole algorithm.

For these tests, the computational complexity will vary between the different
tests. This is different from the previous section where the tests were designed to
have the same computational complexity. Therefore the results are once again
presented in two ways, first as plots where the x-axis is the subset size, as seen
in Figure 6. The other plots present the results plotted by their computational
complexity. As in the last section, the complexity is calculated using Equation 2,
and the plot uses a logarithmic scale on the z-axis. This can be seen in Figure 7.
The results for each test case are also available in tabular form in Table 3.

From the results we note that regardless of our choice of 1, our algorithm
outperforms the greedy variants. For Grain-128a, we also see that a higher n; in
the initial iterations seem to lead to better results which remain as the algorithm
proceeds towards larger subsets. The results for Kreyvium are not as clear, and it
seems like the size of the resulting subset is the most important property.

4.3 Results for Different Starting Points

In the previous tests, optimal subsets of size 5 has been used as a starting point
for the simulations. In this section, we compare the use of such an optimal start

180

Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

0
el
2
5
e
100
-+ greedy 1-add
greedy 2-add
50 | |====greedy 3-add
e 2-2-22-22-2-2-1-...
2-22-2:1-..
— 1
0
5 10 15 20 25 30 35
bit set size

(a) Grain-128a

rounds

1000 -

600
400 -
s greedy 1-add
greedy 2-add
=== greedy 3-add
200 F 2222022240,
2-22.2-1-..
—
0
5 10 15 20 25 30 35 40
bit set size

(b) Kreyvium

Figure 6: Varying n. Thick black lines are the greedy baselines for n equal to 1, 2, and 3.

250 |
200
150 -
@
8
2
5
2
100 -
------- greedy 1-add
- — greedy 2-add
50 | |====greedy 3-add
—_— -2-2-2-1-,
0

27 28 29

log(complexity)

(a) Grain-128a

30 31 32 33

rounds

1000
800 r-‘
600
400
------- greedy 1-add
- — greedy 2-add
== greedy 3-add
200 2-2-2-2-1-.
0
26 27 28 29 30 31 32 33

log(complexity)

(b) Kreyvium

Figure 7: Varying n. Thick black lines are the greedy baselines for n equal to 1, 2, and 3.
The z-axis scaled according to logarithmic computational complexity.

4 Results 181

Table 3: Maximum length of initial sequence of zeros in MDM signature when varying n,
expressed as actual count, and percentage of total initialization rounds

Grain-128a Kreyvium

Count Percentage Count Percentage
Greedy 1-bit 187 73.1 862 74.8
Greedy 2-bit 187 73.1 864 75.0
Greedy 3-bit 187 73.1 851 73.9
2-2-2-2-2-2-2-2-1-... 203 79.3 868 75.4
2-2-2-2-1-... 199 77.7 872 75.7
1-... 195 76.2 869 75.4

to starting from an empty subset. A simple approach has been chosen, namely to
reuse two test cases from Section 4.1, namely the test case named 20 %-k for both
Grain-128a and Kreyvium. These test cases start with optimal subsets of size 5.

The two new additional test cases start with an empty subset, and then se-
quentially add one bit during the first five iterations. The remaining iterations’
parameters are kept the same between all test cases, so that the difference in the
initial start is isolated. In this way we can investigate whether this optimal starting
set is important or not.

The result of this experiment can be found in Figure 8, again with one subfig-
ure for Grain-128a and one for Kreyvium. The results are summarized in Table 4.
In summary, the differences are very small, and for Kreyvium non-existent, which
means that the choice of initial starting point may not be the most important de-
cision to make when selecting parameters for the algorithm.

Table 4: Maximum length of initial sequence of zeros in MDM signature with different
starting subsets, expressed as actual count, and percentage of total initialization

rounds
Grain-128a Kreyvium
Count Percentage Count Percentage
5-bit optimal start 203 79.3 896 77.8
Empty subset start 201 78.5 896 77.8

4.4 Results on Grain-128

Apart from new results on Grain-128a and Kreyvium, tests were also performed on
Grain-128, a predecessor of Grain-128a which has been analyzed in other works. In
[Stal0], a full-round (256 out of 256 initialization rounds) result was presented

182 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

Different starting subsets Different starting subsets

1000 -

800 /-/_/—'—_—/

600

200 -

150 |/

rounds
rounds

100 | ; :
400 -

200 [

optimal optimal
- empty - empty

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
bit set size bit set size

(a) Grain-128a (b) Kreyvium

Figure 8: Different starting sets and how they affect the results

using a subset of size 40, using only IV-bits, with an optimal starting subset of
size 6. This was found using a constant n = 2. This corresponds to a parameter
set of @ = [1.0,1.0,1.0,...]), k = [1,1,1,...],and n = [6,2,2,...] in our
improved algorithm.

It would clearly be possible to find the exact same subset using our improved
algorithm, but we are also interested in seeing whether or not we can find other
subsets resulting in full-round results using our improved algorihtm. A new set of
parameters for our improved algorithm is constructed as follows: The possibility to
keep multiple candidates in each step is utilized, especially in the beginning where
there are still small subsets. Using the improved algorithm, a smaller subset of size
25 is found, which still gives us a full-round result of 256 out of 256 initialization
rounds.

Using the complexity expression in Equation 2, the computational complexity
between the two results can be compared. We find that our improved algorithm
has a complexity which is a factor about 2'2 lower than the earlier result, while
still finding an equal amount of zeros in the MDM signature.

5 Related Work

Related work can be divided into two main categories: work related to the maxi-
mum degree monomial test, and work related to general cryptanalysis of the dis-
cussed ciphers.

In [Saa06], Saarinen described the d-Monomial test, and how it can be ap-
plied in chosen-IV attacks against stream ciphers. In contrast to our work, and
the work done by Stankovski [Stal0], Saarinen considers monomials of various
degrees, namely monomials up to degree d, therefore the name d-Monomial test.
In addition to this difference, the choice of input subset bits is different. Saari-
nen only considers consecutive bits either in the beginning or in the end of the IV.

5 Related Work 183

This is in contrast to our work, where the subset is chosen freely as any subset of
IV and/or key bits.

Related to the work of Saarinen, the Maximum Degree Monomial (MDM)
was introduced by Englund et. al. in [E]JSO7]. Rather than looking at several dif-
ferent degrees of monomials, the MDM test only focuses on the maximum degree
monomial. The motivation behind this choice is that the maximum degree mono-
mial is likely to occur only if all IV bits have been properly mixed. In addition
to this, the existence of the maximum degree monomial is easy to find. The coef-
ficient of the monomial can be found by simply XORing all entries in the truth
table.

In the previously mentioned work, a subset of the IV space was used in the
tests. In [Stal0], a greedy heuristic to find these subsets was discussed. The greedy
algorithm started with an optimal, precalculated, subset of a small size, and then
added n bits in each step in a greedy fashion. In addition, both IV and key bits
were suggested for getting distinguisher and nonrandomness results, respectively.
Several different ciphers were analyzed, among them Grain-128 and Trivium.

Other work related to distinguishers for Trivium is [LLW15], where the authors
concentrate on small cubes, and instead look at unions of these cubes. Another
difference is that they look at sub-maximal degree monomial tests.

Also partly based on Stankovski’s work is the work in [SMB16], where the
authors propose two new, alternative heuristics. Here, the heuristic is modified
so that it does not maximize the initial sequence of zeros in the MDM signature.
Rather, in the first heuristic, called “maximum last zero”, the authors not only
maximize the initial sequence of zeros, but also ensure that the position of the
current iteration in the MDM signature is a zero as well. In their second heuristic,
called “maximum frequency of zero”, they instead look at the total amount of zeros
in the MDM signature. Their heuristics are applied to the ciphers Trivium [De
06] and Trivia-SC [Cha+15]. Similar to our paper, they also mention the use of a
non-constant 7, i.e. a n-vector, although the authors do not discuss the reasons
for this extension.

In [Vie07] an attack called AIDA on a modified version of Trivium was pre-
sented. In this case Trivium was modified so that it only had half of the original
count of initialization rounds. Related to this attack are the cube attacks [DS09],
and especially the dynamic cube attack [DS11] which was used to attack Grain-128.

Attacks on the newer Grain-128a can be found in the literature as well. In
[Ban+13] the authors present a related-key key attack requiring > 232 related keys
and > 264 chosen IVs, while in [SBM15] the authors present a differential fault
attack against all the three ciphers in the Grain-family.

There is very limited work regarding the analysis of Kreyvium, possibly because
the original Kreyvium paper is relatively recent, however in [WIM17] the authors
discuss conditional differential cryptanalysis of Kreyvium.

184 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

6 Conclusions

This paper has described the design and motivation of the maximum degree mono-
mial test when designing nonrandomness detectors. The MDM test requires a
subset of key and IV bits, and in this paper we have designed and proposed a
new algorithm to find such subsets. Our algorithm is based on a greedy approach,
but rather than using a naive greedy algorithm, we propose an algorithm which
is less likely to get stuck in local optima, and therefore yields better final results.
The algorithm is highly flexible, and parameters can be chosen and adapted to get
a both reasonable and predictable computational complexity. To validate our al-
gorithm, we have performed a significant amount of simulations to find good in-
put parameters to our algorithm. Simulations has been performed mainly on the
ciphers Grain-128a and Kreyvium, and the results show that our new algorithm
outperforms previously proposed naive greedy algorithms.

Acknowledgments

This paper is an extended and revised version of the paper “Improved Greedy Non-
randomness Detectors for Stream Ciphers” previously presented at ICISSP 2017
[KHS17].

The computations were performed on resources provided by the Swedish Na-
tional Infrastructure for Computing (SNIC) at Lunarc.

References

o

[Agr+11] M. Agren et al. “Grain-128a: a new version of Grain-128 with
optional authentication”. In: International Journal of Wireless and
Mobile Computing 5.1 (2011), pp. 48-59.

[Ban+13] S. Banik et al. “A Chosen IV Related Key Attack on Grain-128a”.
In: Information Security and Privacy: 18th Australasian Conference,
ACISP 2013, Brisbane, Australia, July 1-3, 2013. Proceedings.
Springer, 2013, pp. 13-26.

[Can+16] A. Canteaut et al. “Stream Ciphers: A Practical Solution for
Efficient Homomorphic-Ciphertext Compression”. In: Fast
Software Encryption: 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 313-333.

References

185

[Cha+15]

[De 06]

[DS09]

[DS11]

[EJS07]

[Hel+06]

[HJMOG]

[KHS17]

[LLW15]

A. Chakraborti et al. “TriviA: A Fast and Secure Authenticated
Encryption Scheme”. In: Cryprographic Hardware and Embedded
Systems — CHES 2015: 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings. Springer, 2015,

pp- 330-353.

C. De Canniére. “Trivium: A Stream Cipher Construction
Inspired by Block Cipher Design Principles”. In: Information
Security: 9th International Conference, ISC 2006, Samos Island,
Greece, August 30 - September 2, 2006. Proceedings. Springer, 20006,
pp- 171-180.

I. Dinur and A. Shamir. “Cube Attacks on Tweakable Black Box
Polynomials”. In: Advances in Cryptology - EUROCRYPT 2009:
28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings. Springer, 2009, pp. 278-299.

I. Dinur and A. Shamir. “Breaking Grain-128 with Dynamic Cube
Attacks”. In: Fast Software Encryption: 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected
Papers. Springer, 2011, pp. 167-187.

H. Englund, T. Johansson, and M. Sénmez Turan. “A Framework
for Chosen IV Statistical Analysis of Stream Ciphers”. In: Progress
in Cryptology — INDOCRYPT 2007: 8th International Conference
on Cryptology in India, Chennai, India, December 9-13, 2007.
Proceedings. Springer, 2007, pp. 268-281.

M. Hell et al. “A Stream Cipher Proposal: Grain-128”. In: 2006
1EEE International Symposium on Information Theory. July 20006,
pp- 1614-1618.

M. Hell, T. Johansson, and W. Meier. “Grain — a Stream Cipher
for Constrained Environments”. In: International Journal of
Wireless and Mobile Computing, Special Issue on Security of
Computer Network and Mobile Systems 2.1 (May 2006), pp. 86-93.

L. Karlsson, M. Hell, and P. Stankovski. “Improved Greedy
Nonrandomness Detectors for Stream Ciphers”. In: Proceedings of
the 3rd International Conference on Information Systems Security
and Privacy. SciTePress, 2017, pp. 225-232.

M. Liu, D. Lin, and W. Wang. “Searching cubes for testing
Boolean functions and its application to Trivium”. In: 2015 [EEE
International Symposium on Information Theory (ISIT). June 2015,
pp- 496-500.

186

Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

[Saa06]

[SBMI5]

[SMBI6]

[Stal0]

[Vie07]

[WIM17]

Appendix

M.-]. O. Saarinen. Chosen-1V Statistical Attacks on eSTREAM
Stream Ciphers. eSSTREAM, ECRYPT Stream Cipher Project,
Report 2006/013. http:
//www.ecrypt.eu.org/stream/papersdir/2006/013. pdf.
2006.

S. Sarkar, S. Banik, and S. Maitra. “Differential Fault Attack
against Grain Family with Very Few Faults and Minimal
Assumptions”. In: IEEE Transactions on Computers 64.6 (June
2015), pp. 1647-1657.

S. Sarkar, S. Maitra, and A. Baksi. “Observing biases in the state:
case studies with Trivium and Trivia-SC”. In: Designs, Codes and
Cryptography (2016).

P. Stankovski. “Greedy distinguishers and nonrandomness
detectors”. In: INDOCRYPT 2010. Springer, 2010, pp. 210-226.

M. Vielhaber. Breaking ONE.FIVIUM by AIDA an Algebraic IV
Differential Attack. Cryptology ePrint Archive, Report 2007/413.
http://eprint.iacr.org/2007/413. 2007.

Y. Watanabe, T. Isobe, and M. Morii. “Conditional Differential
Cryptanalysis for Kreyvium”. In: Information Security and Privacy:
22nd Australasian Conference, ACISP 2017, Auckland, New
Zealand, July 3-5, 2017, Proceedings, Part I. Ed. by]. Pieprzyk and
S. Suriadi. Cham: Springer International Publishing, 2017,

pp. 421-434.

This appendix contains the exact vectors used for the different results discussed in
Section 4. The vectors used for the results for varying k and o are given in Table 5.
In the same fashion, the vectors used for the results for varying m are presented in
Table 6. Finally, the vectors for the results on Grain-128 are given in Table 7.

http://www.ecrypt.eu.org/stream/papersdir/2006/013.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/013.pdf
http://eprint.iacr.org/2007/413

Appendix 187

Table 5: Varying k and o [KHS17]

Greedy
k {,1, 1, 1}
n {51, 1}
a {1, 1, 1,1, 1, 1, 1 }
Improved (20 %-k)
k{1000, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 100, 60, 60, 20, 20, 20,
20, 20, 20, 12,6, 3,2,2,2,2,2,1,1,1,1}
n {5111,111, 1,1, 1,1, 1}
a {1.0,0.005,0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005, 0.005,
1 1 1 2 2
0.01, 55, 55» 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 75, 1%, 0.375, 0.5, 0.5, 0.5, 0.5, 2, 1.0,
0.5,1.0}
0.5 %-k
k {1000,5,5,5,5,5,5,5,5,5,5,5,3,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1, 1, 1 }
n {511,1111, 1,1, 1}
o {1.0,02,02,02,02,02,02,02,02,0.2,0.2,60.2, ¢, 0.3, 0.5, 3, 1.0, 1.0, 1.0, 1.0,
1.0, 0.6, 0.5, 0.4, 0.75, 1.0, 1.0, 1.0, 1.0, 2, 1.0, 0.5, 1.0 }
0.2 %-k
k {1000,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1,1, 1, 1, 1, 1 }
n {5111,111,1,11, 1, 1}
a {1.0,05,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5, 0.5, 0.5, 0.5, 0.6, 1.0, %, 1.0, 1.0, 1.0, 1.0,
1.0,0.6, 0.5, 0.4, 0.75, 1.0, 1.0, 1.0, 1.0, 2, 1.0, 0.5, 1.0 }
min-k
k {1000,1, 1, 1,1, 1,1, 1, 1, 1,1, 1, 1, 1 }
n {511,111, 1,1, 1 }
a {1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.6, 1.0, %, 1.0, 1.0, 1.0, 1.0,

>3
1.0, 0.6, 0.5, 0.4, 0.75, 1.0, 1.0, 1.0, 1.0, %, 1.0,0.5,1.0}

188 Paper VI: Not So Greedy: Enhanced Subset Exploration for ...

Table 6: Varying n [KHS17]

Greedy 1-add

{1, 1,1, 1, 1,1, 1, 1, 1
n {511,1,11,11, 1,1, 1, 1
{1, 1,1, 1, 1,1, 1, 1, 1

>

> 1y

——

> > 1y

Greedy 2-add

k {1,1,1,1,1,1,1,1,1,1,1,1,1, 1}
n {52222,2,2,2,2,2,2,2,2,2}
o {1,1,1,1,1,1,1,1,1,1,1,1,1,1}

Greedy 3-add

k {1,1,1,1,1,1,1}
n {53,3,3,3,3,3}
a {1,1,1,1,1,1,1}

> s

2-2-2-2-2-2-2-2-1-...

k {1000, 200, 200, 200, 200, 150, 50, 50, 50, 30, 15,6, 5, 5, 5,5,5,1,1,1,1,1,1,1, 1, 1 }

n{52222222211111111111111111}

a {1.0,0.005, 0.005, 0.0005, 0.005, 150,002 0.01, 0.02, 0.02
0.1, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }

4
i, &, 0.15,0.2,0.2, 1,

2-2-2-2-1-...

k{1000, 200, 200, 200, 200, 150, 50, 50, 50, 30, 15, 6,5,5,5,5,5, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,1,1,1}

n {522221,L,1,1,,,1,1,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

a {1.0,0.005, 0.005, 0.0005, 0.005, 35, 0.02, 0.01, 0.02, 0.02, i, &, 0.15,0.2,0.2, 2,
0.1,0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }

1-...

k{1000, 200, 200, 200, 200, 150, 50, 50, 50, 30, 15, 6,5,5,5,5,5,1,1,1,1,1,1, 1,1, 1,
LLL1L 1111}

n {51.,1,1,,,,,,,,,1,,,,,,,,,,,,,1,1,1,1,1,1,1,1,1,1}

o {1.0,0.005, 0.005, 0.0005, 0.005, 115, 0.02,0.01,0.02,0.02, &, &, 0.15,0.2,0.2, &,

0.1,0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }

Table 7: Results on Grain-128 [KHS17]

Greedy 1-add

k{1000, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 60, 60, 20, 20, 20, 20, 20 }

n {61,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

o {1.0,0.0125,0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125, 0.0125,
0.0125, 0.00625, 0.01, 5, 55, 0.05, 0.05, 0.05, 0.05 }

Popular Science Summary
in Swedish

Popularvetenskaplig
sammanfattning

Digitaliseringen av samhillet fortsitter i allt snabbare takt, och informationstekno-
login utvecklas kontinuerligt. De forsta stegen var att digitalisera lokala samlingar
av information for att géra dem enkelt sokbara pa plats. Med informationen vil
digitaliserad var nista steg istillet att gora informationen tillginglig fér andra, till
exempel 6ver Internet.

Med 6kad tillginglighet krivs dock 6kad informationssikerhet; en 6kad till-
ginglighet leder ocksa till en 6kad risk for att informationen kan #ndras, eller
hamna i ordtta hinder. Nista steg inom databehandling — som pégar i detta nu —
ir den 6kande anvindningen av I'T-tjinster som hanteras av nagon annan, populirt
kallat molntjinster. Dessa tjinster har snabbt vixt i populiritet, mycket beroende
pa okad flexibilitet, dd anvindare enkelt kan 6ka eller minska den inkdpta ka-
paciteten snabbt efter behov.

Behandling och lagring av data pa servrar enbart nibara 6ver Internet kriver
forstas att informationssikerhet diskuteras. Denna avhandling berdr informations-
sikerhet i dessa moderna situationer.

Siker kommunikation

Ett grundliggande krav for att lagra och himta information frin tjinster pa In-
ternet 4r att informationen kan 6verforas pa ett sikert sitt. Vad som menas med
sikert varierar fran fall till fall, men ett vanligt krav ir att konfidentialiteten ska
skyddas, det vill siga att informationen enbart ska kunna ldsas av behoriga anvin-
dare. I praktiken uppnas detta ofta med hjilp av kryptering, ett sitt att gora in-
formation olésbar f6r obehoriga som dvervakar trafiken; endast personer med ritt
nyckel kan ldsa informationen.

Design av dessa algoritmer kréver ofta att hdnsys tas till flera olika aspekter. I de
allra flesta fall 4r det inte enbart sikerhet som ir relevant, utan dven prestandan hos
algoritmen. Algoritmen behéver ha en tillricklig sikerhetsmarginal for att kunna
ge trovirdig sikerhet, men samtidigt inte ha en onddigt hég marginal eftersom det
ger simre prestanda.

Ett sitt att analysera sikerheten i en krypteringsalgoritm ir att forsoka kon-
struera en urskiljare. Mélet med denna ir att avgéra om en given mingd data ir

192 Populirvetenskaplig sammanfattning

resultatet av en kryptering, eller om det bara dr slumpmissig data. For en vildes-
ignad krypteringsalgoritm ska det inte vara méjligt att konstruera en urskiljare.
En av artiklarna i denna avhandling berdr konstruktionen av sidana urskiljare,
nirmare bestimt en algoritm for att hitta en delmingd av insignaler till krypter-
ingsalgoritmen som fir den att uppvisa maximal icke-slumpmissighet. Sddan icke-
slumpmassighet kan sedan anvindas for att forsoka konstruera en urskiljare, eller
designa andra typer av attacker. Den konstruerade algoritmen ir en generalisering
av tidigare naivt giriga algoritmer, och ger ett bittre resultat eftersom den minskar
risken att fastna i lokala extrempunkter.

Tillf6rlitlig databehandling

Molntjinsters 6kade flexibilitet f6r anvindaren 4r en uppenbar fordel, samtidigt
som det ocksd medfor ny problematik for anvindarna. Eftersom data nu behandlas
pa nagon annans system — i motsats till anvindarens egna — blir en rimlig foljdfraga
hur systemets beteende kan garanteras.

En teknik for att garantera datorers beteende ir zrusted computing — ungefir
tillforlitlig databehandling — ofta forkortat TC. I praktiken finns det flera olika sdtt
att implementera TC i datorer: tva vanliga implementationer ar Trusted Platform
Module (TPM), och Software Guard Extensions (SGX). TPM ir en separat hard-
varukomponent, inbyggd i mdnga moderna datorer, som kan utf6ra kryptografiska
berikningar och lagra information. Komponenten ir designad for att vara svér att
manipulera, vilket betyder att dven nagon med fysisk tillging har svért att lisa ut
kinslig information. Det gor att en TPM ofta anvinds for att lagra kinslig infor-
mation s som krypteringsnycklar.

Problem uppstar dock om datorn av nigon anledning behéver bytas ut, eller
om komponenten av nigon anledning slutar fungera. I dessa fall behover den
kinsliga informationen flyttas — migreras — till en ny enhet. I en av artiklarna i
denna avhandling tittar vi hur detta kan l6sas i system som kriver hog tillging-
lighet. Dessutom beskrivs hur problemet kan 16sas for tva olika versioner av TPM-
standarden, TPM 1.2 och TPM 2.0.

En annan av artiklarna i avhandlingen beskriver hur en migrering frin TPM
1.2 till TPM 2.0 kan se ut. TPM 2.0 ir den nyare standarden, men ir inte
bakitkompatibel — det finns betydande skillnader i beteende mellan de bada ver-
sionerna. [artikeln beskrivs hur nycklar kan flyttas frain TPM 1.2 dll TPM 2.0
med bibehallen funktionalitet.

For att kunna leverera den flexibilitet som krivs av molntjinster anvinds idag
mjukvarudefinierade nitverk (eng. Software-defined networking). Dessa mojlig-
gor for tjinsteleverantdrer att dynamiske bygga upp nitverk med hjilp av mjuk-
vara, istillet for att fysiskt behéva koppla om nitverksutrustning. I en annan av
artiklarna i denna avhandling beskrivs en losning for att verifiera sidana mjuk-
varubaserade nitverkskomponenter iznan de ansluts till ndtverket. For att méjlig-

Populirvetenskaplig sammanfattning 193

gora detta anvinds trusted computing. Detta okar sikerheten i nitverket, eftersom
obehériga nitverkskomponenter utgér en sikerhetsrisk.

Mjukvarusarbarheter

Vid utveckling av modern mjukvara anvinds i stor utstrickning externa mjuk-
varukomponenter, ofta utvecklade av andra 4n utvecklaren sjilv. Detta gor utveck-
lingsprocessen snabbare, minskar risken att upprepa samma misstag som andra,
och ger tid att fokusera pa utveckling av ny funktionalitet. Anvindning av externa
komponenter kriver dock att utvecklaren uppdaterar dessa externa komponenter
nidr sikerhetsbrister uppticks — pd liknande sitt som datoranvindare behover in-
stallera sikerhetsuppdateringar for sina program.

I avhandlingen beskrivs ett hjidlpmedel for utvecklare att bedéma hur relevant
en mjukvarusirbarhet dr for dem. Systemet samlar information om utvecklarens
preferenser och lir sig hur utvecklaren brukar agera for en viss typ av mjukvarusar-
barhet, och skapar utifrin detta en profil. Systemet kan anvindas som beslutsstéd
for att underlitta for utvecklare att bestimma hur en sarbarhet ska hanteras.

Slutligen beskriver en av avhandlingens artiklar hur tillférlitlig databehandling
kan anvindas for att skydda profilen i ett system som det ovan. Utvecklarens profil
kan uppfattas som kinslig, och bor dirfor inte spridas. Samtidigt behovs pro-
filen for att systemet ska kunna ge bra rekommendationer. Dirfér har en 16sning
designats sd att profilen kan anvindas av systemet, utan att det gér att koppla en
given profil till en viss utvecklare.

	Abstract
	Acknowledgements
	Contribution Statement
	Contents
	Introduction
	Dissertation Outline

	Background
	Trusted Computing
	Recommender Systems
	Cryptography

	Contributions and Conclusions
	Contributions
	Conclusions

	References
	Included Publications
	Using TPM Secure Storage in Trusted High Availability Systems
	Introduction
	Overview of TPM 1.2 and TPM 2.0
	Scenario and Threat Model
	Requirements
	Proposed System Design
	Security Analysis and Comparison of Properties for Ke Generation
	Unified API
	Related Work
	Conclusions
	References

	Enabling Key Migration Between Non-Compatible TPM Versions
	Introduction
	Overview of TPM 1.2 and TPM 2.0
	Goals
	Migration Scenarios
	Certifiable Migratable Keys
	Implementation
	Related Work
	Conclusions
	References

	Trust Anchors in Software Defined Networks
	Introduction
	System and Threat Model
	Solution Space
	Implementation
	Evaluation
	Related Work
	Limitations and Future Work
	Conclusion
	References

	A Recommender System for User-Specific Vulnerability Scoring
	Introduction
	Recommenders and Vulnerability Severity Ratings
	System Model
	Implementation
	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Privacy-enabled Recommendations for Software Vulnerabilities
	Introduction
	Preliminaries
	Vulnerability Profile Privacy
	Implementation
	Evaluation
	Related Work
	Conclusion
	References

	Not So Greedy: Enhanced Subset Exploration for Nonrandomness Detectors
	Introduction
	Background
	Improved Algorithm
	Results
	Related Work
	Conclusions
	References
	Appendix

	Popular Science Summary in Swedish

