
eavesROP: Listening for ROP Payloads in Data
Streams

Christopher Jämthagen, Linus Karlsson, Paul Stankovski, and Martin Hell

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{christopher.jamthagen,linus.karlsson,paul.stankovski,martin.hell}@eit.lth.se

Abstract. We consider the problem of detecting exploits based on return-
oriented programming. In contrast to previous works we investigate to
which extent we can detect ROP payloads by only analysing streaming
data, i.e., we do not assume any modifications to the target machine,
its kernel or its libraries. Neither do we attempt to execute any poten-
tially malicious code in order to determine if it is an attack. While such
a scenario has its limitations, we show that using a layered approach
with a filtering mechanism together with the Fast Fourier Transform,
it is possible to detect ROP payloads even in the presence of noise and
assuming that the target system employs ASLR. Our approach, denoted
eavesROP, thus provides a very lightweight and easily deployable mit-
igation against certain ROP attacks. It also provides the added merit
of detecting the presence of a brute-force attack on ASLR since library
base addresses are not assumed to be known by eavesROP.

Keywords: Return-Oriented Programming, ROP, Pattern Matching,
ASLR

1 Introduction

Bu↵er overruns [1] have for a long time been a common source of software
vulnerabilities. The bu↵er overrun vulnerability may be exploited to perform a
code injection attack, where the goal is to inject arbitrary data and replacing
the return address with the address of the injected data. There are several well-
known and widely used mitigations against this approach. Since the injected
code should not be executable, but rather considered as data, the memory pages
corresponding to this data can be marked as non-executable. Data Execution
Prevention (DEP) [14] and the W � X security feature [22] are approaches
implementing this idea. While this will prevent the classic code injection attacks,
it will not prevent code reuse attacks. In these attacks, the adversary will not
inject the code to be executed, but will instead direct the program flow to code
that is already loaded by the process, typically a shared library. One example is
the return-to-libc attack [4] in which the attack points to existing code in the
libc library.

The final publication is available at:
https://link.springer.com/chapter/10.1007/978-3-319-13257-0_25

A more advanced code reuse attack is Return-Oriented Programming (ROP),
in which the attacker identifies small pieces of usable code segments, called gad-

gets, and chains them together using a ret instruction. A ret instruction will
pop an address from the stack and continue execution at that address.

One available countermeasure against code injection, which can also be ap-
plied to prevent code reuse attacks, is Address Space Layout Randomization
(ASLR) [22]. ASLR will randomize the base address of the program’s text, stack,
and heap segments and the adversary will not know where the gadgets will be
located. However, as described in Section 2.2, ASLR can sometimes be bypassed.

There have been several proposed defenses against ROP attacks, all taking
slightly di↵erent approaches and using di↵erent assumptions. A typical mitiga-
tion is to identify some specific features in the attack that distinguishes it from
benign code execution and then build a mitigation technique based on those
distinguishing features [7,8,10,12,21,23]. Another approach is to rewrite libraries
or targeted code such that it is not usable in an attack [17,19] or to randomize
addresses which are needed by an attacker [13,15,20,32].

Instead of detecting the attacks on the target systems, another goal may be
to detect ROP attacks in data. In [23] data was scanned and possible exploits
were speculatively executed in order to determine if they were exploits. This
requires a snapshot of the virtual memory of the process that is protected. In
[29] the authors consider a detection approach where documents are analyzed
to find ROP attacks. Documents are collected and sent to a separate virtual
machine, where they are opened in their native application, and the memory is
then analyzed for ROP payloads.

In this paper we present eavesROP, which is a more lightweight approach
where no execution takes place. We try to identify ROP payloads by looking
at network tra�c only, i.e., we do not make any modifications to machines,
programs, libraries or operating systems, nor do we try to execute any of the re-
ceived data. We do not even require any kind of access to the machines. Scenarios
could be an implementation in a gateway to a corporate network, ROP payload
detection in switches or at an ISP before data is forwarded to the end user. The
question that we try to answer is: How much information can we deduce by just
looking at the data? We target ROP exploits where gadget addresses can be
explicitly found in the data sent to the application. We assume that ASLR is
enforced by the operating system, and that the attacker has somehow acquired
information about the location of libraries. Of course, our detection mechanism
has no such information. We show how to filter out possible ROP payloads and
how to determine if the candidate payload is a ROP attack or not. Even with
just a moderate number of gadgets, we can detect the payload e�ciently. This
is true even if there is a large amount of noise present.

We have tested eavesROP using available exploits and it is able to detect
exploits with no false negatives.

2 Background

In this section we provide the necessary background on return-oriented program-
ming and address space layout randomization.

2.1 Return-Oriented Programming

Return-oriented programming [26] is an exploitation technique that allows for ar-
bitrary code execution without having to inject code into the vulnerable process.
To achieve this, an attacker constructs a payload of addresses, each pointing to a
small sequence of instructions reachable and executable by the a↵ected process.
These instruction sequences are called gadgets and typically consist of very few
instructions, ending with a return instruction (ret). This return instruction will
pop the next dword from the stack, put it into the instruction pointer register
(EIP) and continue execution at the next gadget. Gadgets do not have to be
aligned with the intended instructions. Any byte that represents the opcode of
a ret can potentially be used as a gadget.

Not only ret instructions can be used in these types of attacks. It is also
possible to use jump-based instructions as in [2,6]. We will not consider these
type of attacks in this paper, but note that it would be possible to extend our
algorithms to detect these gadgets as well.

2.2 Address Space Layout Randomization (ASLR)

ASLR protects from bu↵er overflow attacks by randomizing the location of the
stack, the heap and the location of all dynamically loaded libraries. The term
was coined by the PaX project [22] which also has a well-known implementation.

Following the introduction of ASLR in Windows XP SP2 (2004) and in the
Linux Kernel (since version 2.6.12, 2005), writing exploits has become much
more di�cult.

However, the e�ciency of ASLR is limited. First, some small amount of code
is not randomized, leaving the possibility to still use gadgets in the code where
the location is predictable. Even though this code is rather small, it has been
shown that it is possible to find usable gadgets in it [24]. Randomizing the
application code is one kind of protection against these attacks [32]. Another
aspect of ASLR, as was shown in [27], is the limited entropy in the address
space, which makes it possible to brute-force absolute locations.

In addition to brute-forcing the ASLR, it has been shown that information
leakage can occur through e.g., bu↵er and heap overrun bugs [11,31] and other
types of vulnerabilites [25,28]. This could give an attacker at least partial infor-
mation about the location of ASLR-a↵ected code.

The exact means by which an attacker bypasses ASLR, may it be through
brute force or information leakage, are independent of our payload detection
algorithm.

3 Our Approach

In this section we give a description of the di↵erent parts of eavesROP. The idea
is based on the observation that many gadgets are typically taken from the same
library which results in gadget addresses being located relatively close to each
other. Note though, that our approach only require a few gadgets to be located
in the same library, other gadgets can be taken from other libraries. A more
detailed description of eavesROP can be found in the full version of this paper
[16].

3.1 Optional Data Pre-Filter

Certain input data can be expected to exhibit properties that make them look
like addresses close to each other in the memory space—thus looking like ROP
payloads—even though the data is actually non-malicious. Our goal is to filter
out this data before it reaches later steps in the algorithm, to reduce the total
computational overhead of our system.

Of special interest are printable ASCII characters, not only because much
data is readable text, but also because large portions of adjacent ASCII data
may—when combined into 32-bit words—look like adjacent addresses. Filtering
is however a trade-o↵ between performance and false negatives. There are ways
to make ROP payloads printable [18]. Such a payload would be removed if a
filter for printable characters is enabled. This is why the filtering step should be
considered optional.

If the pre-filter is enabled, it removes blocks of UTF-8 strings. In our imple-
mentation, we define a block as a sequence of five or more adjacent, printable
UTF-8 characters. When a matching block is found, the complete block is re-
moved from the input. This leads to potential noise as non-adjacent bytes become
adjacent after the data between them is removed. This does, however, only a↵ect
a few addresses, which does not cause any problems in practice since our ROP
pattern matching is very precise and noise tolerant.

3.2 Cluster Detection

An actual exploit payload will contain several gadget addresses that lie close
together with respect to the entire addressable memory space. The purpose
of the address cluster detection is to find and isolate the congested parts of
the memory space for further processing by generating a binary address vector,
Pobs, of size L, i.e., the size of the largest targeted library. These vectors indicate
addresses found in the data.

We let M denote the maximum size of a ROP payload in 4-byte words that
our detection is guaranteed to support. A näıve approach to detect the gad-
get addresses is to pick M words of data, map them to Pobs and match this
vector with a known library pattern Plib. Doing this byte by byte in the data
would produce the correct maximum matching, but it is a very slow approach.
Moreover, all words but one will repeat every 4 bytes. Another problem is that

the addresses contained within the data window can be spread out over the en-
tire ASLR address space (N bytes), making Pobs very large. We propose to use
an algorithm that is much more e�cient, and will still always find the correct
maximum matching.

Instead of considering M addresses, we pick a data window of size D = 2M .
Thus, we consider twice as much data as the maximum payload, but in return we
consider M+1 possible payloads simultaneously. Doubling the data window size
introduces more noise (more data in one window), so a few more data windows
will pass the cluster detection stage, but this e↵ect is marginal compared to the
significant gain in processing e�ciency.

When the data window slides over the next data chunk of size M , we begin
by extracting potentially viable addresses. As the o↵set of a ROP payload in
the data bu↵er is unknown, but we know that each address is four bytes and
addresses are aligned inside a payload, we create a list for each o↵set.

We need to keep track of eight such address lists, four for each of the two
M -word data chunks covered by the D-word data window. Separating the lists
per data chunk allows for incrementing the data window in steps of M words,
while reusing the four lists corresponding to the previous M words.

The four new address lists are sorted using an e�cient linear-time sorting
algorithm such as bucket sort [9]. Such e�cient sorting is possible since all ad-
dresses are of the same size. Once sorted, we slide an address window of size L
(same size as executable part of the largest library) down the combination of the
two lists for each o↵set. Since each of the two lists is individually sorted, we can
easily traverse the sorted combination of the lists with time complexity O(D).

Let T be a threshold value that determines the minimum number of gadgets
in an exploit that we want to be able to detect. A small T leads to detection of
more exploits, but it also results in more pattern matching, slowing down the
detection algorithm. In practice, the lowest value that our algorithm can handle
is T ⇡ 6, depending on the instruction size of each gadget (see Section 3.3) and
the error probabilities (see Section 3.4).

If we find an address window that contains at least T unique addresses, the
binary vector Pobs is constructed by entering a ’1’ in each position corresponding
to an address in the address window. To minimize redundant checks, Pobs is
normalized to always start with a ’1’. Then we proceed to perform pattern
matching via FFT, as described in Section 3.3.

3.3 Pattern Matching

The vector Pobs from the previous step is matched with binary library vectors.
The relative distances of the memory addresses in an address window form a
very distinct pattern. This pattern is matched with the gadget address patterns
of libraries Plib.

Since we allow ASLR, the precise memory location of the library is unknown.
This is handled by using the Fast Fourier Transform to compute the maximum
matching between Pobs and Plib.

21 16 0d 00 85 c0 0f 95 c3

21 16 0d 00 85 c0 0f 95 c3

21 16 0d 00 85 c0 0f 95 c3

1 1 1 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0

0 1 1 0 0 0 0 1 0

Fig. 1. Translation of maximal length gadget sequences to binary pattern.

Identifying Gadgets in a Library In order to find all possible gadgets in a
library, the executable part of it is scanned for the opcode of di↵erent types of re-
turn instructions, namely 0xC2 (retn imm16), 0xC3 (retn), 0xCA (retf imm16)
and 0xCB (retf). For each position of these bytes in the library we search back-
wards one byte at a time and try to assemble a legal instruction flow ending with
the return. We define the entry zone, z, as the number of instructions we allow
for each gadget, not including the return instruction. This means that we can
find many gadgets ending at the same return instruction due to the possibility
of instruction overlapping in the x86 architecture.

The starting byte of every possible gadget is used to construct the binary
vector Plib. This is the vector that is used for pattern matching with Pobs, which
is the output of the address cluster detection algorithm.

To understand how the gadget structure in a library is translated into a
binary pattern, consider the following sequence of nine bytes (hex):

21 16 0d 00 85 c0 0f 95 c3

Using an entry zone of size z = 3 (at most three instructions), we construct
maximal gadget chains by interpreting the bytes preceding the return instruction
c3 as consecutive instructions. There are three possible maximal gadget chains
in the above byte sequence, as illustrated in Figure 1.

The top two gadget chains are both of length three. While the top chain
begins with a single-byte instruction 16, the second chain extends this to a two-
byte instruction 21 16. The third chain is of length 1, but it is maximal since it
cannot be further extended.

A sequence of bytes belonging to a library is translated into a binary pattern.
A ’1’ in the array represents a gadget and a ’0’ is used for the other positions.

Pattern Matching via FFT Perfect pattern matching can be performed ef-
ficiently using a Fast Fourier Transform (FFT). Pattern matching, here, means
that we want to find the maximum weight of the overlap between two patterns
that are overlaid. We also want this matching to be perfect, which is to say that
all actual gadget addresses that are used in an exploit will be counted. All actual

gadget addresses in an exploit will, in the general case, contribute positively to
the weight of the maximal pattern match.

Focusing on one library, Plib and Pobs are binary vectors of length L. If
both patterns are aligned, the maximum matching can be calculated as the dot
product between Plib and Pobs according to

Plib · Pobs =
L�1X

i=0

Plib[i]Pobs[i].

However, we have no way of knowing if the alignment is correct, so we rather
need to try all alignments to see which one produces the highest fit. That is,
we need to calculate the dot products for all possible shifts of the two patterns.
This can be accomplished by using the Fast Fourier Transform (FFT). The FFT
computes the circular discrete convolution c of two vectors a and b of length L,

c [t] = (a ⇤ bL) [t] =
L�1X

i=0

a [i] b [(t� i) mod L] . (1)

For this to be applicable to our situation, we need to adjust two things. First
of all, we need to reverse one of the vectors, say Plib. Secondly, since indices in
Eq. (1) are taken modulo L, we need to pad both Plib and Pobs with zeros to
double length. Without this zero padding, the tails and fronts of the two vectors
will contribute to the maximum matching in an undesirable way, e↵ectively
bringing more noise into our result.

The FFT approach (see [3]) has time complexity O(L lgL), compared to
O(L2) for the näıve approach. Letting F denote the FFT version of the Discrete
Fourier Transform (DFT), we may compute c as

c = F�1 (F (a)� F (b)) ,

where � denotes componentwise multiplication.
We let a and b be the vectors Plib and Pobs respectively after the zero padding

as described above. The weight of the maximum matching is given as the maxi-
mum component of c,

cmax = max
i

c [i] . (2)

Note that Plib is known beforehand, so we can precompute F (a) for e�ciency.

3.4 Statistical Test

The maximum overlap is given by the maximum value of the inverse Fourier
transform as given in Eq. (2). In order to find an expression for the number of
overlaps we make the following approximations.

– Locations corresponding to gadgets in Plib are uniformly distributed.
– The entries in the convolution vector c are approximated as independent

events, all with the same probability.

Using these approximations, the number of overlaps between Plib and Pobs is
binomially distributed, X(w) ⇠ Bin(w, G

L), where w and G denote the Hamming
weights of Pobs and Plib, respectively. Note that G should here be understood as
the number of gadgets in a library for a given entry zone, and w is the number of
addresses in an address window. Thus, the probability that there are s overlaps
is given by

Pr(X(w) = s) =

✓
w

s

◆✓
G

L

◆s ✓
1� G

L

◆w�s

. (3)

Since Plib and Pobs are convolved, each convolution consists of L such binomially
distributed samples. In order to find the probability distribution for the max-
imum value of the convolution array, we write the probability that any single
value is at most s as

Pr(X(w) s) =
sX

t=0

✓
w

t

◆✓
G

L

◆t ✓
1� G

L

◆w�t

.

The probability that all values are at most s is then, using the second approxima-
tion above, Pr(X(w) s)L. From this it follows that the probability distribution

for the maximum value of the convolution vector c(w)
max is given by

f
c(w)

max

(s) = Pr(c(w)
max = s) = Pr(X(w) s)L � Pr(X(w) s� 1)L (4)

with cumulative distribution function

F
c(w)

max

(s) = Pr(c(w)
max s) = Pr(X(w) s)L.

A threshold value for c(w)
max is chosen, denoted ĉmax. If c

(w)
max � ĉmax the payload

is considered a ROP. Associated with this decision are false positives and false
negatives. The false positive rate, denoted ↵, is defined as the probability that
non-malicious data is considered malicious (i.e., a ROP payload) while the false
negative rate, denoted �, is the probability that a malicious payload is mistaken
for non-malicious data. To write expressions for ↵ and �, let the Hamming
weight w of Pobs be written as w = wG + wN , where wG is the number of ROP

gadgets and wN is the number of noise addresses. The distribution of c(w)
max for

non-malicious data is given by Eq. (4). The value of c(w)
max for a ROP payload is

given by c
(w)
max = wG +X(wN), where X(wN) is distributed according to Eq. (3).

Now, we can write the two error probabilities as

↵ =Pr(c(w)
max � ĉmax) = 1� Pr(c(w)

max ĉmax � 1)

=1� Pr(X(w) ĉmax � 1)L (5)

� =Pr(X(wN) < ĉmax � wG) = Pr(X(wN) ĉmax � wG � 1)

The false positives rate ↵ is only for one library. If we want to test the
payload against a set of ` libraries, the total false positive rate ↵` is given by
↵` = 1� (1� ↵)`.

By choosing ↵ = 0.0001 we allow ` = 100 libraries to be supported, still
keeping the total false positive rate ↵` below 0.01. (We assume here that all
libraries are of approximately equal size.) We let the false negative rate � = 0.01
since this is not a↵ected by multiple libraries (the payload will only match one
library). Using these values for ↵ and � allows us to compute the threshold
ĉmax and the minimum number of gadgets wG that are required for successful
detection. Table 1 gives these numbers for z = 3 and some di↵erent choices of
w. Note that for all values w such that ĉmax = wG, we have � = 0. Thus we
will only obtain false negatives for very large noise values. For z = 1 we will get
ĉmax = wG = 6, which is the lowest possible threshold T for eavesROP.

Table 1. Threshold ĉ
max

and minimum number wG of gadgets needed for ROP payload
detection in an address window of weight w. Error rates ↵ 0.0001 and � 0.01. The
example library used is libc 2.18 of size L = 1224144.

entity values

weight of P
obs

w 7 10 15 20 25 30 50 100 200
threshold ĉ

max

7 8 9 10 11 12 15 20 27
min num gadgets wG 7 8 9 10 11 12 15 20 26

The standard deviation of Eq. (4) turns out to be very small, with almost
all probability mass concentrated to only a few values for s. This makes the
detection algorithm e�cient, allowing us to choose small error rates while still
requiring few gadgets to succeed, even in the presence of a large amount of noise.

It can be noted that the required number of gadgets wG is very close to the
threshold ĉmax. Thus, as a rule of thumb, the number of gadgets required for
successful detection is approximately equal to the threshold wG ⇡ ĉmax.

The false positive rate has been simulated using the data from Table 2. The
simulations indicate that the actual false positive rate is slightly larger than that
given by Eq. (5). This is not surprising, since the theoretical model assumes that
gadget addresses are uniformly distributed. Due to data redundancy and the
proximity coupling between gadgets and return instructions, a slightly larger

c
(w)
max is expected. Still, according to our simulations, increasing the threshold
value by 2 will remove virtually all false positives. This shows that the theoretical
model is adequate.

3.5 Performance

The performance of eavesROP depends on the parameters used in the various
stages of the system. All simulations have been performed on an Intel Core i7
4770 @ 3.4 GHz with 16 GB of RAM.

A more aggressive filtering in each step will reduce the amount of data sent
to the next stage, which will increase the overall performance. Simulations have
been performed on various types of data. The data pre-filter has a throughput

of approximately 35 MiB/s for compressed or random data, and approximately
50 MiB/s for web data (HTML, JPEG, . . .). The input/output size ratio varies
between 0.965 for random or compressed data, to 0.068 for web data.

After the optional data pre-filter—which may have reduced the total amount
of data—the data is passed to the cluster detection step. This step has a through-
put of around 10 MiB/s. The output of the cluster detection step is multiple
matched windows, i.e. multiple Pobs. Table 2 shows how many Pobs vectors that
are passed to the pattern matching layer, for some di↵erent parameters.

Table 2. Number of matching address windows per GiB of input data, for a data
window of size D, and with at least T addresses within distance L = 1224144, for
di↵erent types of data. L is here the size of libc 2.18.

D = 50 D = 200 D = 1000

type of data T = 6 8 10 T = 6 8 10 T = 6 8 10

random 0 0 0 12 0 0 24749 53 0

web (HTML, JPG,. . .) 1795 689 590 5589 1878 1208 40795 8007 3292

mp3 42 8 2 631 106 10 162014 8472 1023

pdf 4068 248 61 34718 5266 1316 1011850 176992 45289

mkv (H.264/MPEG-4) 354 2 0 513 81 66 35545 841 125

Each Pobs outputted from the cluster detection stage will be passed to the
pattern matching step. Each pattern matching sequence takes roughly 1 second
using FFT implemented in software. If necessary, this step could be accelerated
using a hardware FFT implementation.

All parts of eavesROP have been implemented and tested using real-world
exploits. We are able to detect all exploits of at least 6 gadgets, using a threshold
value ĉmax = 6, for example [5] and [30]. More simulation results can be found
in the full version of the paper [16].

4 Conclusions

We have investigated to which extent it is possible to detect a ROP payload by
only analysing data, and assuming that ASLR is used on the target system. If we
have the set of libraries and binaries that can be used to find gadgets, we show
that it is possible to detect a ROP payload even in the presence of noise and by
applying suitable data filters and the Fast Fourier Transform the detection has
acceptable performance. Naturally, encrypted tra�c, obfuscated ROP payloads
and locally generated exploits are out of scope for our detection approach. The
exact performance will depend on the type of data and the number of gadgets
that are required for an exploit to be detected depends on the maximum al-
lowed size for the payload and the amount of noise. Furthermore performance

may be optimized with greater pre-filtering and dedicated hardware for FFT
calculations.

References

1. Aleph One: Smashing the stack for fun and profit, phrack, 49 (1996)
2. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: A

new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. pp. 30–40. ASIACCS ’11,
ACM, New York, NY, USA (2011)

3. Bracewell, R.: The Fourier Transform and its Applications. McGraw-Hill Series in
Electrical and Computer Engineering, McGraw-Hill Science/Engineering/Math; 3
edition (June 1999)

4. c0ntex: Bypassing non-executable-stack during exploitation using return-
to-libc. Available at: http://www.infosecwriters.com/text_resources/pdf/

return-to-libc.pdf

5. Cantoni, L.: BigAnt Server 2.52 SP5 - SEH Stack Overflow ROP-based exploit
(ASLR + DEP bypass). Available at: http://www.exploit-db.com/exploits/

22466/

6. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security. pp. 559–572. CCS
’10, ACM, New York, NY, USA (2010)

7. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: Drop: Detecting return-
oriented programming malicious code. In: Information Systems Security, Lecture
Notes in Computer Science, vol. 5905. Springer Berlin Heidelberg (2009)

8. Cheng, Y., Zhou, Z., Miao, Y., Ding, X., Deng, R.: ROPecker: A generic and prac-
tical approach for defending against ROP attack. In: NDSS. Research Collection
School Of Information Systems (2014)

9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, Third
Edition. MIT Press (2009)

10. Davi, L., Sadeghi, A., Winandy, M.: ROPdefender: A detection tool to defend
against return-oriented programming attacks. In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. ASIACCS
’11 (2011)

11. Durden, T.: Bypassing PaX ASLR protection, phrack, 59 (2002)
12. Fratric, I.: Ropguard: Runtime prevention of return-oriented programming attacks

(2012)
13. Gupta, A., Kerr, S., Kirkpatrick, M., Bertino, E.: Marlin: Making it harder to

fish for gadgets. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12, ACM (2012)

14. Hensing, R.: Understanding DEP as a mitigation technology. Avail-
able at: http://blogs.technet.com/b/srd/archive/2009/06/12/

understanding-dep-as-amitigation-technology-part-1.aspx (2009)
15. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.: Ilr: Where’d my

gadgets go? In: Security and Privacy (SP), 2012 IEEE Symposium on (2012)
16. Jämthagen, C., Karlsson, L., Stankovski, P., Hell, M.: eavesROP: Listening for

ROP payloads in data streams (full version). Available at: http://lup.lub.lu.
se/record/4586662 (2014)

http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
http://www.exploit-db.com/exploits/22466/
http://www.exploit-db.com/exploits/22466/
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-amitigation-technology-part-1.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-amitigation-technology-part-1.aspx
http://lup.lub.lu.se/record/4586662
http://lup.lub.lu.se/record/4586662

17. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with ”return-less” kernels. In: Proceedings of the 5th European Conference on
Computer Systems. EuroSys ’10, ACM (2010)

18. Lu, K., Zou, D., Wen, W., Gao, D.: Packed, printable, and polymorphic return-
oriented programming. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) Recent
Advances in Intrusion Detection, Lecture Notes in Computer Science, vol. 6961,
pp. 101–120. Springer Berlin Heidelberg (2011)

19. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-free: Defeating
return-oriented programming through gadget-less binaries. In: Proceedings of the
26th Annual Computer Security Applications Conference. pp. 49–58. ACSAC ’10,
ACM (2010)

20. Pappas, V., Polychronakis, M., Keromytis, A.: Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In: IEEE Sym-
posium on Security and Privacy. IEEE Computer Society (2012)

21. Pappas, V., Polychronakis, M., Keromytis, A.: Transparent ROP exploit mitigation
using indirect branch tracing. In: Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). USENIX (2013)

22. PaX Team: Address space layout randomization. Available at: http://pax.

grsecurity.net/docs/aslr.txt (2003)
23. Polychronakis, M., Keromytis, A.: ROP payload detection using speculative code

execution. In: Proceedings of the 2011 6th International Conference on Malicious
and Unwanted Software. MALWARE ’11, IEEE Computer Society (2011)

24. Schwartz, E., Avgerinos, T., Brumley, D.: Q: Exploit hardening made easy. In:
Proceedings of USENIX Security 2011 (2011)

25. Serna, F.J.: CVE-2012-0769, the case of the perfect info leak. Available at: http:
//zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf (2009)

26. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. pp. 552–561. CCS ’07, ACM (2007)

27. Shacham, H., Page, M., Pfa↵, N., Goh, E., Modadugu, N., Boneh, D.: On the
e↵ectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security. pp. 298–307. CCS ’04,
ACM (2004)

28. Snow, K., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.: Just-
in-time code reuse: On the e↵ectiveness of fine-grained address space layout ran-
domization. In: Security and Privacy (SP), 2013 IEEE Symposium on. pp. 574–588
(May 2013)

29. Stancill, B., Snow, K.Z., Otterness, N., Monrose, F., Davi, L., Sadeghi, A.R.: Check
my profile: Leveraging static analysis for fast and accurate detection of ROP gad-
gets. In: Stolfo, S., Stavrou, A., Wright, C. (eds.) Research in Attacks, Intrusions,
and Defenses, Lecture Notes in Computer Science, vol. 8145, pp. 62–81. Springer
Berlin Heidelberg (2013)

30. Sud0: Audio converter 8.1 0day stack bu↵er overflow PoC exploit ROP/WPM.
Available at: http://www.exploit-db.com/exploits/13763/

31. Vreugdenhil, P.: Pwn2Own 2010 Windows 7 Internet Ex-
plorer 8 exploit. Available at: http://vreugdenhilresearch.nl/

Pwn2Own-2010-Windows7-InternetExplorer8.pdf (2010)
32. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Binary stirring: Self-randomizing

instruction addresses of legacy x86 binary code. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. CCS ’12 (2012)

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://www.exploit-db.com/exploits/13763/
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

	eavesROP: Listening for ROP Payloads in Data Streams

